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� In interest rate or equity markets, pricing is related to the cost 

of the hedge

− ex: Black-Scholes pricing model, local volatility model

� In credit markets, pricing is disconnect from hedging

− ex: The standard pricing model for CDO tranches does not rely on a 

replication argument

� Need to relate pricing and hedging
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� Purpose of the presentation

�Focus on very specific aspects of default and credit spread risk

�Under which the market for CDO tranches is complete
– CDO tranches can be perfectly replicated by dynamically trading CDS 

(Credit Default Swaps)

� Overlook of the presentation

�Standardized CDO tranches

�Tree approach to hedging defaults
– Analogue of the local volatility model of Dupire (1994) or Derman & 

Kani (1994) for credit portfolio derivatives

�Results and comments
– Hedging strategies obtained from a tree calibrated on market data

– Comparison with market practice
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� What is a standardized CDO tranche ?
− Bilateral contract between a buyer of protection and a seller of

protection

− The reference entity can be either

�Credit Default Swap Index (Itraxx Europe, CDX North America)
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Standardized CDO tranchesStandardized CDO tranches

� What does a CDO tranche mean?
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� We will start with two names only

− Building a risk neutral tree of default states

− Computation of prices along the tree for zero coupon CDO 

tranches

� Multiname case: homogeneous Markovian model

− Building of risk-neutral tree for the aggregate loss

− Computation of dynamic deltas

� Technical details can be found in the paper: 

− “hedging default risks of CDOs in Markovian contagion models”
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� Some notations :

− τ1, τ2 default times of counterparties 1 and 2, 

− Ht available information at time t,

− P historical probability,

− : (historical)  default intensities:

�

� Assumption of « local » independence between default events

− Probability of 1 and 2 defaulting altogether:

�

− Local independence: simultaneous joint defaults can be neglected
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� Building up a tree:
− Four possible states: (D,D), (D,ND), (ND,D), (ND,ND)

− Under no simultaneous defaults assumption p(D,D)=0

− Only three possible states: (D,ND), (ND,D), (ND,ND)

− Identifying (historical) tree probabilities:
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� Stylized cash flows of  short term digital CDS on counterparty 1:

− CDS 1 premium

� Stylized cash flows of  short term digital CDS on counterparty 2:
− CDS 2 premium 2

Qdtα

( , )D ND

( , )ND D

( , )ND ND
( )1 21 P P dtα α− +

2
Pdtα
1
Pdtα 11 Qdtα−

1
Qdtα−

1
Qdtα−

( , )D ND

( , )ND D

( , )ND ND
( )1 21 P P dtα α− +

2
Pdtα
1
Pdtα 2

Qdtα−

21 Qdtα−

2
Qdtα−

1
Qdtα

0

0



Tree approach to hedging defaultsTree approach to hedging defaults

� Cash flows of short term digital first to default swap with premium            :

� Cash flows of holding CDS 1 + CDS 2:

� Absence of arbitrage opportunities imply:

� Perfect hedge of first to default swap by holding 1 CDS 1 + 1 CDS 2
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� Three possible states: (D,ND), (ND,D), (ND,ND)

� Three tradable assets: CDS1, CDS2, risk-free asset

� For simplicity, let us assume 
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� Three state contingent claims
− Example: claim contingent on state

− Can be replicated by holding

− 1  CDS 1 +            risk-free asset 

− Replication price =   
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� Similarly, the replication prices of the               and      claims

� Replication price of: 

� Replication price =
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� Replication price obtained by computing the expected payoff
− Along a risk-neutral tree

� Risk-neutral probabilities
− Used for computing replication prices

− Uniquely determined from short term CDS premiums

− No need of historical default probabilities
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� Computation of deltas
− Delta with respect to CDS 1:

− Delta with respect to CDS 2:

− Delta with respect to risk-free asset: p

�p also equal to up-front premium

− As for the replication price, deltas only depend upon CDS premiums
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� Dynamic case:

− CDS 2 premium after default of name 1

− CDS 1 premium after default of name 2

− CDS 1 premium if no name defaults at period 1

− CDS 2 premium if no name defaults at period 1

� Change in CDS premiums due to contagion effects
− Usually,                            and 
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� Computation of prices and hedging strategies by backward 

induction

− use of the dynamic risk-neutral tree

− Start from period 2, compute price at period 1 for the three 

possible nodes

− + hedge ratios in short term CDS 1,2 at period 1

− Compute price and hedge ratio in short term CDS 1,2 at time 0

Tree approach to hedging defaultsTree approach to hedging defaults



� Stylized example: default leg of a senior tranche
− Zero-recovery, maturity 2

− Aggregate loss at time 2 can be equal to 0,1,2

� Equity type tranche contingent on no defaults

� Mezzanine type tranche : one default

� Senior type tranche : two defaults
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� Stylized example: default leg of a mezzanine tranche
− Time pattern of default payments

− Possibility of taking into account discounting effects

− The timing of premium payments

− Computation of dynamic deltas with respect to short or actual CDS on names 1,2
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� In theory, one could also derive dynamic hedging strategies 

for standardized CDO tranches

− Numerical issues: large dimensional, non recombining trees

− Homogeneous Markovian assumption is very convenient

�CDS premiums at a given time t only depend upon 

the current number of defaults

− CDS premium at time 0 (no defaults)

− CDS premium at time 1 (one default)

− CDS premium at time 1 (no defaults)
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� Tree in the homogeneous case

− If we have             , one default at t=1

− The probability to have             , one default at t=2…

− Is                     and does not depend on the defaulted name at t=1

− is a Markov process
− Dynamics of the number of defaults can be expressed through a binomial 

tree
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� From name per name to number of defaults tree ( , )D D
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� Easy extension to n names
− Individual intensity at time t for         defaults:

− Number of defaults intensity : sum of surviving name intensities:

− can be easily calibrated

− on marginal distributions of by forward induction.
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� Easy computation of CDO tranches and Index present values along 
the nodes of the tree using a backward induction
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� What about the credit deltas?

− In a homogeneous framework, deltas with respect to CDS are all 

the same

− Perfect dynamic replication of a CDO tranche with a credit default 

swap index and the default-free asset

− Credit delta with respect to the credit default swap index

− = change in PV of the tranche / change in PV of the CDS index 
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� Calibration of the tree on a market base correlation structure
− Number of names: 125

− Default-free interest rate: 4%

− 5Y Credit spreads: 20bps

− Recovery rate: 40%

� Loss intensities with respect
to the number of defaults
− For simplicity, assumption of 

time-homogeneous loss intensities

− Increase in intensities: 
contagion effects

− Compare flat and steep 
base correlation structures

Results and commentsResults and comments



� Dynamics of Credit Default Swap Index in the tree
− In bps pa

− The first default leads to a jump from 19bps to 31 bps

− The second default is associated with a jump from 31 bps to 95 bps

− Explosive behavior associated with upward base correlation curve

Results and commentsResults and comments

0 14 56 84
0 20 19 17 16
1 0 31 23 20
2 0 95 57 43
3 0 269 150 98
4 0 592 361 228
5 0 1022 723 490
6 0 1466 1193 905
7 0 1870 1680 1420
8 0 2243 2126 1945
9 0 2623 2534 2423
10 0 3035 2939 2859

Nb Defaults
Weeks



� Dynamics of credit deltas ([0,3%] equity tranche): 

− Deltas are between 0 and 1
− Gradually decrease with the number of defaults

� Equity tranche can be viewed as a short put position on the Index
� Concave payoff, negative gammas

− When the number of defaults is > 6, the tranche is exhausted
− Credit deltas increase in time

�Consistent with a decrease in time value

Results and commentsResults and comments

0 14 56 84
0 3.00% 0.541 0.617 0.823 0.910
1 2.52% 0 0.279 0.510 0.690
2 2.04% 0 0.072 0.166 0.304
3 1.56% 0 0.016 0.034 0.072
4 1.08% 0 0.004 0.006 0.012
5 0.60% 0 0.002 0.002 0.002
6 0.12% 0 0.001 0.000 0.000
7 0.00% 0 0 0 0

Nb Defaults
OutStanding 

Nominal
Weeks



� Comparison of market deltas and tree deltas (at inception)
− Market delta computed under the standard Gaussian copula assumption

− Base correlation is unchanged when shifting spreads (“correlation-
sticky deltas”)

− Standard way of computing CDS index hedges in trading desks

� Smaller equity tranche deltas in the tree model
− How can we explain this?

Results and commentsResults and comments

[0-3%] [3-6%] [6-9%] [9-12%] [12-22%]
Market deltas 27 4.5 1.25 0.6 0.25
Tree deltas 21.5 4.63 1.63 0.9 0.6



� Smaller equity tranche deltas in the tree model (cont.)
− Default is associated with an increase in dependence

�Contagion effects

� Increasing correlation leads to a decrease in the PV of the equity 
tranche

� Recent market shifts go in favor of the contagion model

Results and commentsResults and comments



� The current crisis is associated with joint upward shifts in credit 
spreads

�Systemic risk
� And an increase in base correlations

� Tree deltas are well suited in regimes of fear

Results and commentsResults and comments



� What do we learn from this hedging approach?
− Thanks to stringent assumptions: 

– credit spreads driven by defaults 

– homogeneity 

– Markov property

− It is possible to compute a dynamic hedging strategy

– Based on the CDS index

− That fully replicates the CDO tranche payoffs

– Model matches market quotes of liquid tranches

– Very simple implementation

– Credit deltas are easy to understand

− Improve the computation of default hedges

– Since it takes into account credit contagion

ConclusionConclusion


