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Introduction

* |n interest rate or equity markets, pricing is tedato the cost

of the hedge

— exX: Black-Scholes pricing model, local volatility o

* |n credit markets, pricing Is disconnect from hedgi

— ex: The standard pricing model for CDO tranchesdu# rely on a

replication argument

* Need to relate pricing and hedging




Introduction

* Purpose of the presentation
» Focus on very specific aspects of default and tegtead risk

» Under which the market for CDO tranches is complete

— CDO tranches can be perfectly replicated by dynamically trading CDS
(Credit Default Swaps)

* Qverlook of the presentation
» Standardized CDO tranches

» Tree approach to hedging defaults

— Analogue of the local volatility model of Dupire (1994) or Derman &
Kani (1994) for credit portfolio derivatives

» Results and comments
— Hedging strategies obtained from a tree calibrated on market data
— Comparison with market practice



Standardized CDO tranches

* What is a standardized CDO tranche ?
— Bilateral contract between a buyer of protectiod arseller of

protection
Quaterly premium
Buyer of payments g Seller of
Protection e Protection
Payment when the

refer ence entity is affected
by a default

Reference Entity

— The reference entity can be either
» Credit Default Swap Index (Itraxx Europe, CDX North America)




Standardized CDO tranches

* \What does a CDO tranche mean?

Aggregate L oss L,

Credit risk
porfolio

Ex : ltraxx

125 names

100%




Tree approach to hedging defaults

* We will start with two names only

— Building a risk neutral tree of default states

— Computation of prices along the tree for zero coup®O
tranches

* Multiname case: homogeneous Markovian model
— Building of risk-neutral tree for the aggregateslos

— Computation of dynamic deltas

* Technical details can be found in the paper:

— “hedging default risks of CDOs in Markovian contagiondels”




Tree approach to hedging defaults

* Some notations :

— T7,, T, default times of counterparties 1 and 2,
— H, available information at timg
— P historical probability,

— a,,a, : (historical) default intensities:
5 PlrO[tt+dt]|H, |=afdt, i=12

* Assumption of « local » independence between defaelts
— Probability of 1 and 2 defaulting altogether:
>  P[r,O[tt+di,7,0[t,t+dt]|H, ] = afdt xabdt in (dt)”

— Local independence: simultaneous joint defaultsizEaneglected




N

Tree approach to hedging defaults

Building up a tree:
— Four possible statedd(D), (D,ND), (ND,D), (ND,ND)
— Under no simultaneous defaults assumpgigmn,=0
— Only three possible state®,\\D), (ND,D), (ND,ND)
— ldentifying (historical) tree probabilities:

aldt_- (D,ND)

(ND,ND) <28 \p p)
1th

(ND, ND)

p( D) ~ =0= pD \D) p(D,D) + p(D,ND) — p(D) — alpdt
p( D) =0= pND D) p(D,D) + p(ND,D) - p(D) — a;dt

-

Pino .np =1- Poy)~ Pp



Tree approach to hedging defaults

* Stylized cash flows ofhort term digital CDS on counter party 1.

— CDS 1 premiuna dt r - 1—aldt (D,ND)

o
\;

s dt

—a’dt  (ND,D)

1—(0'1 S)dt
—a’dt (ND,ND)

* Stylized cash flows ohort term digital CDS on counter party 2:
_ - Q
CDS 2 premiuma ;- dt —a';’dt (D,ND)

0L @dt  1_4%t (ND,D)

1-(a, >q; ) dt



Tree approach to hedging defaults

* Cash flows ofhort term digital first to default swap with premium a2dt

ad 1-apdt (D,ND)

1 a2dt (ND,D)

a
( 1 —ant (ND, ND)

® Cash flows of holding CDS 1 + CDS 2:
afd 1—(01Q +a§)dt (D, ND)
P
el 1—(0le +a§)dt (ND, D)

1-(a; g, )dt

N (a2 +ag)dt (ND,ND)
* Absence of arbitrage opportunities impbf = a? + a3
* Perfect hedge of first to default swap by holdinG0S 1 + 1 CDS 2




Tree approach to hedging defaults

®* Three possible state,(ND), (ND,D), (ND,ND)
* Three tradable assets: CDS1, CDS2, risk-free asset

/alpd'/ 1+r (D,ND)
P
1 a, ot 1+r (ND,D)
1th

1+r (ND,ND)

* For simplicity, let us assume=0




Tree approach to hedging defaults

afdt ~ 1 (D,ND)

®* Three state contingent claims
— Example: claim contingent on stdte,ND) - a, dt 0 (ND,D)

— Can be replicated by holding
P
— 1 CDS1+a.dt risk-free asset 1-(a; )ci
1 \ 0 (ND, ND)
a’dt (D,ND)

}pdl/l—afdt (D,ND) adt
P
0 aydt —gldt (ND,D) + adt a,dt a’dt (ND,D)

1—(a'f P)Cl'[ 1_(0’1 ag)dt
—a dt (ND,ND) a2dt (ND,ND)
— Replication price =a;’dt afdt_~1 (D,ND)
P
a®dt <=4 0 (ND, D)

1-(a % a’ ) dt
0 (ND, ND)



Tree approach to hedging defaults

* Similarly, the replication prices of thD, D) and(ND,ND) claims
afdt - 0 (D,ND) afdr~ 0 (D.ND)
Qd O';dt Q Q A't/
aldt 1 (ND,D) 1-(aR +a?)dt 20 (ND,D)
1th 1-(ay gy )dt
0 (ND,ND) 1 (ND,ND)
gy
a, dt
* Replication price of: 7 : b (ND,D)
1th
¢ (ND,ND)

* Replication price =0’1th><a+0’§dt><b+(1— @y +a’§)dt)><c




Tree approach to hedging defaults

* Replication price obtained by computing the expedqayoff

— Along a risk-neutral tree

Q
afdtxa+a§dt><b+(1—(a§+a§)dt)c il b (ND,D)

1—(0'1 ag)dt
C (ND,ND)

* Risk-neutral probabilities
— Used for computing replication prices
— Uniquely determined from short term CDS premiums
— No need of historical default probabilities




Tree approach to hedging defaults

* Computation of deltas
— Delta with respect to CDS 19,
— Delta with respect to CDS 29,
— Delta with respect to risk-free assget:

» p also equal to up-front premium

payoff CDS 1 payoff CDS 2

~N

~

a= p+51><(1—afdt)+52><(—a§dt)
b=p+d x(-aRdt) +3,x(1-addt)
( (

J/\

C=p+9, X —afdt) + 0, % —agdt)

payoff CDS 1 payoff CDS 2

_J/

\

— As for the replication price, deltas only dependmug@DS premiums




Tree approach to hedging defaults

A2dt—(D,D)

®* Dynamic case

aldr ~ (P-NP) —g—jegr— (D ND)

2 (ND, D)
(ND, D)

1—(0'1 ag)dt

(ND, ND) AL (D,ND)

m(ND, D)
1- +

o | (ﬂlQ ’ (ND, ND)

— Aydt CDS 2 premium after default of name 1

- Kk’dt cps 1 premium after default of name 2

— 7°dt CDS 1 premium if no name defaults at period 1

— 71dt CDS 2 premium if no name defaults at period 1

®* Change in CDS premiums due to contagion effects
— Usually, m°<ap <k? andn <ai <A




Tree approach to hedging defaults

* Computation of prices and hedging strategies bkwan
Induction
— use of the dynamic risk-neutral tree

— Start from period 2, compute price at period 1tiherthree
possible nodes

— + hedge ratios in short term CDS 1,2 at period 1
— Compute price and hedge ratio in short term CDSftine 0




Tree approach to hedging defaults

Stylized example: default leg of a senior tranche
— Zero-recovery, maturity 2
— Aggregate loss at time 2 can be equal to 0,1,2
» Equity type tranche contingent on no defaults
» Mezzanine type tranche : one default
» Senior type tranche : two defaults

A2dt

D, ND Q
(D.ND) =120t

apdtx k;dt +azdt x k7t (ND, D) Ky
up-front preﬁium default leg ’ =K t
dt

(ND, ND) 2
1~ (2 + 78

1 (D,D)
0 (D,ND)

1 (D,D)

0 (ND,D)
O (D,ND)
0 (ND,D)
0 (ND,ND)

senior
> tranche
payoff

J



Tree approach to hedging defaults

* Stylized example: default leg of a mezzanine tranche

— Time pattern of default payments
g bay 1% —0 (D.D) |

.y 2% 1 (D.ND) =<1—or O (D,ND)
q.-dt + a;dt
D,D
_“1 : Ky 0 | ) mezzanin:
. = 1Q t - tranche
0 (ND,D)
ot payo
O (ND,ND) 1 (D,ND)
> 1 (ND,D)
1- (72 +
(ﬂlQ /"N0 (ND,ND) -

— Possiblility of taking into account discounting et
— The timing of premium payments
— Computation of dynamic deltas with respect to shodctual CDS on names [L,2




Tree approach to hedging defaults

* |n theory, one could also derive dynamic hedgingtsgies
for standardized CDO tranches
— Numerical issues: large dimensional, non recompitnees

— Homogeneous Markovian assumption is very convenient

»CDS premiums at a given timenly depend upon
the current number of defaultg(t)
— CDS premium at time 0 (no defaultg,}?dt =addt =a? (t =0,N (0)= o)
— CDS premium at time 1 (one defaulffdt = x2dt =a® (t =1,N (t) = 1)
— CDS premium at time 1 (no defaults)®dt = 72dt = a® (t =1,N (t) = 0)




Tree approach to hedging defaults

* Tree in the homogeneous case

/:y(D,ND) =g (1,3)(P:ND)
Q(1 (D,D)

1- 23%(0,0 ' (ND,D)
%%%(D,ND)

(ND,ND) <—

— If we haveN(@)=1 | one defaulttal

— The probability to havll(2)=1 | one defatit=2...

— Is 1-a2(1,]) and does not depend on #faulted name at1
— N(t) is aMarkov process

— Dynamics of the number of defaults can be expressed through a binomial
tree



Tree approach to hedging defaults

®* From name per name to number of defaults tree

a. (13— (B:P)

(ND, D)
(ND, ND) 2. (1,0) (D,ND)

(D,D)
"7~ (ND, D)
1-2a

N(2)=2 ) "MTN(ND, NOY)
a,(;l,/ﬁ/ number

N1 =1 "1=a (a7 N(@=1  :of default J
2,60 11,9 tree

N(0)=0 N(@)=0 N(2)=0
020 T 59 T g V@




Tree approach to hedging defaults

* Easy extension to names
— Individual intensity at time for N(t) defaults:a, (t,N(t))
— Number of defaults intensity : sum of surviving reamtensities:

A(LN@®)) =(n=-N())a. (t,N()) (n-2)ar N(3)=3
-t (1 N@=2 A2
(n-1)a
N(D) = 1 n—1a. ( N(2) = 1-n- 1)a N(3)=1
na. ,0) //
N(0)=0 N (1 O N(2) = N(3)=0
& 1-na, (0,0 W01, &)= 1-na, &

- a.(0,0,a (L0 o (1) e ( 2pa.( 2)1.. can be easily calibrated

— on marginal distributions dfi(t) by forward induction.




Tree approach to hedging defaults

* Easy computation of CDO tranches and Index presdoes alon

the nodes of the tree using a backward induction

CDO(3.3)
Index(3,3)
A2,

CDO2,2) _{-)(2,2) CDOG,2)

y/ Inokex(2, 2) Index(3,2)
CDA11) 1-A4)  oDo2.1) —/](21) CDO(3,1)

oo B g
aDO0,0 CDA(L0) CDA2,0) CDO(3,0)

Indx(0,0) 1-10.0) |ngex1,0) 1-4@0) Indeq2,0) O Index(3,0)




Tree approach to hedging defaults

* \What about the credit deltas?

In a homogeneous framework, deltas with respeCa& are all

the same

Perfect dynamic replication of a CDO tranche wittredit default

swap index and the default-free asset

Credit delta with respect to the credit default gpwalex

= change in PV of the tranche / change in PV ofGb& index

I(t,N(t))=

CDO(t+1,N (t)+1)-CDO(t+ 1N ¢))

Index(t +1,N (t)+ 1) - Index(t + LN ¢))



Results and comments

® (Calibration of the tree on a market base corratagtoucture

— Number of names: 125

— Default-free interest rate: 4%
— 5Y Credit spreads: 20bps

— Recovery rate: 40%

3% 6% 9% 12% 22%
18% 28% 36% 42% 58%
Table 6. Base correlations with respect to attachment points.

® Loss intensities with respect
to the number of defaults
— For simplicity, assumption of
time-homogeneous loss intensit

— Increase in intensities:
contagion effects

— Compare flat and steep
base correlation structures

N(2)=2
AA
-AA
N() =1 AL, N(22)=1
i :
1—]0A0 N(1)=0 1—20A1 N(Z):O
250
225
200
175
150 = Market case
125 @ Gaussian copula

— o = = =

<«

N

__

&

)

gg

?8

—F igure 6. Loss intensities for the Gaussian copula and market case examples. Number of defaults on

the x — axis.




Results and comments

* Dynamics of Credit Default Swap Index in the tree

— In bps pa
Nb Defaults MECHs
0 14 56 84

0 20 19 17 16

1 0 31 23 20

2 0 95 57 43

3 0 269 150 98

4 0 592 361 228

5 0 1022 723 490

6 0 1466 1193 905

7 0 1870 1680 1420

8 0 2243 2126 1945

9 0 2623 2534 2423

10 0 3035 2939 2859
— The first default leads to a jump from 19bps tdp%
— The second default is associated with a jump frarbss to 95 bps
— Explosive behavior associated with upward basestairon curve




Results and comments

* Dynamics of credit deltas ([0,3%] equity tranche):

Nb Defaults OutSta.nding Weeks
Nominal 0 14 56 84

0 3.00% 0.541 0.617 0.823 0.910
1 2.52% 0 0.279 0510 0.690
2 2.04% 0 0.072 0.166 0.304
3 1.56% 0 0.016 0.034 0.072
4 1.08% 0 0.004 0.006 0.012
5 0.60% 0 0.002 0.002 0.002
6 0.12% 0 0.001 0.000 0.000
7 0.00% 0 0 0 0

— Deltas are between 0 and 1

— Gradually decrease with the number of defaults
» Equity tranche can be viewed as a short put position on the I ndex
» Concave payoff, negative gammas

— When the number of defaults is > 6, the trancheximusted
— Credit deltas increase in time
» Congistent with a decreasein time value




Results and comments

* Comparison of market deltas and tree deltas (&bpiman)
— Market delta computed under the standard Gaussiama assumptio

— Base correlation is unchanged when shifting spréadsrelation-
sticky deltas”)

— Standard way of computing CDS index hedges intigadesks

[0-3%] [3-6%] [6-9%] [9-12%] [12-22%]
Market deltas 27 4.5 1.25 0.6 0.25
Tree deltas 21.5 4.63 1.63 0.9 0.6

* Smaller equity tranche deltas in the tree model
— How can we explain this?



Results and comments

* Smaller equity tranche deltas in the tree modait(¢o
— Default is associated with an increase in deperelenc

» Contagion effects

T
%

Figure 8. Dynamics of the base correlation curve with respect to the number of defaults. Detachment
points on the x —axis. Base correlations on the v —axis.

* |ncreasing correlation leads to a decrease in YhefPhe equity
tranche

* Recent market shifts go in favor of the contagiadel




Results and comments

* The current crisis Is associated with joint upwsindts in credit
Spreads

»Systemic risk
* And an increase In base correlations
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Figure 9. Credit spreads on the five years 1Traxx index (Series 7) in bps on the left axis. Implied
correlation on the equity tranche on the right axis

* Tree deltas are well suited in regimes of fear




Conclusion

* What do we learn from this hedging approach?

— Thanks to stringent assumptions:
— credit spreadsdriven by defaults
— homogeneity
— Markov property
— It is possible to compute a dynamic hedging stsateg
— Based on the CDS index
— That fully replicates the CDO tranche payoffs
— Model matches market quotes of liquid tranches
— Very simple implementation
— Credit deltas are easy to under stand
— Improve the computation of default hedges

— Sinceit takesinto account credit contagion



