
Chapter 1
Valuation of portfolio loss derivatives in an
infectious model∗
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Abstract
In this paper we investigate a particular specification of the top-down dynamic

contagion model proposed in “An extension of Davis and Lo’s contagion model
(2010)”. We consider an economy of n firms which may default directly or may
be infected by other defaulting firms (a domino effect being also possible). The
spontaneous default without external influence and the infections are described by
conditionally independent Bernoulli-type random variables. We provide a recursive
algorithm for the computation of the loss distribution that involves successive appli-
cations of the so-called Waring’s formula. The major advantage of this algorithm is
that it can be applied for a large portfolio. We then examine the calibration of model
parameters on CDX.NA.IG tranche quotes during the crisis.

Key words: credit risk, contagion model, dependent defaults, default distribution,
exchangeability, CDO tranches

1.1 Introduction

The recent financial crisis marked the need for paying more attention to the systemic
risk which can partially be the result of dependence on many factors to a global eco-
nomic environment. A tractable and common way of modeling dependence among
default events is to rely on the conditional independence assumption. Conditionally
on the evolution of some business cycle or macroeconomic related factors, defaults
are assumed to be independent. However, as shown by some empirical studies such
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as [7, 12] or [2], the latter assumption seems to be rejected when tested on historical
default data. An additional source of dependence, namely the chain contagion ef-
fect, is observed and requires the construction of contagion models which would be
able to explain the "domino effects": a defaulting firm causes the default of another
firm which infects another one etc.
In this paper we consider a particular model inspired from [4] which will be shortly
summarized here. In this previous extension, we studied the case of credit entities
that can default either directly or by infection. We extended Davis and Lo’s frame-
work, by relaxing the iid assumption of direct defaults and the iid assumption of
contaminations. We also introduced some features allowing to take into account a
higher number of contaminations required to cause a direct default. Furthermore,
the one-period setting in Davis and Lo’s paper was extended to a fully dynamic
discrete-time setting. Compared to Davis and Lo’s model in which only directly de-
faulting bonds can infect others, our model accounts for a “domino effect” which
can exist between firms due to counterparty relationships. Thus in the model pre-
sented here, the firms can default because of a chain reaction, phenomena which is
often a reason for financial crises. However, in this model, there is no inter-temporal
effect in the infection [see 3, for a model in which there is a delayed effect between
defaults and contagion].
The model proposed in this paper preserves the exchangeability assumption of the
previous model, but is more specific, in order to reduce the complexity of several
formulas and to cope with numerical instability of some of our previous results.
This model is based on conditional independence assumption. Particularly, direct
defaults and contaminations are assumed to be mixtures of independent Bernoulli
variables mixed with a Beta-distributed factor. The main contribution of the paper is
a tractable expression for the distribution of the total number of defaults. The latter
expression can be computed by successive application of the same analytical func-
tion based on the so-called Waring’s formula. This is very appealing on practical
grounds, given that the latter formula can be computed efficiently using recursive
algorithms [see 5].
The outline of the present paper is as follows : in Section 1.2 we present the Davis
and Lo’s model and a previous extension of their model. Then, in Section 1.3, we
analyze a particular case of this extension and give a specific algorithm more suit-
able for large portfolios case. At last, in Section 1.4, we present a short numerical
application of this model to CDX.NA.IG tranche quotes during the crisis.

1.2 Previous studies

Davis and Lo have presented a model where each credit reference can default either
directly, or may be infected by other defaulted references. Let n be the number of
credit references. For name i, we denote by Xi the direct default indicator, Ci the
indirect default indicator and Zi the default indicator (direct or indirect). The Davis
and Lo’s one-period model, may be written as follows: Zi = Xi +(1−Xi)Ci.
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Default of name i occurs if there is a direct default Xi = 1, or otherwise if there is
a contamination Xi = 0 and Ci = 1. The contagion occurs if at least another reference
j defaults directly (X j = 1), and contaminates the considered reference i (Yji = 1),
so that: Ci = 1at least one X jY ji=1, j=1,...,n = 1∑ j=1...n, j 6=i X jY ji≥1.

Davis and Lo obtain the distribution of the total number of defaults N = ∑
n
i=1 Zi:

P [N = k] = Ck
n

k

∑
i=1

Ci
k pi(1− p)n−i(1− (1−q)i)k−i(1−q)i(n−k).

where Ck
n = n!

k!(n−k)! . This result is obtained under the following assumptions:

• {Xi, i = 1, . . . ,n} are iid Bernoulli r.v. with parameter p,
•
{

Yi j, i, j = 1, . . . ,n
}

are iid Bernoulli r.v. with parameter q,
• At least one infection causes an indirect default,
• An infected entity cannot contaminate others (no chain-reaction effect).

We showed in a previous paper [see 4] that these assumptions were quite restric-
tive, so that it is important to release them. One of the most important feature of
this paper is to consider a contagion credit risk model with several periods [t, t +1],
t ∈ {1, . . . ,T}, where T ∈ N∗ is the maximum time horizon.

Recall that n is the number of names in the credit portfolio and Ω = {1, . . . ,n}
the corresponding set of entities. We denote by X i

t the direct default indicator, C i
t

the indirect default indicator, Zi
t the default indicator (direct or indirect) associated

with name i in the period [t, t +1[. The model is:{
Zi

0 = 0, i = 1, . . . ,n
Zi

t = Zi
t−1 +(1−Zi

t−1)[X
i
t +(1−X i

t )C
i

t ], i = 1, . . . ,n, t = 1, . . . ,T,
(1.1)

where C i
t = f

(
∑ j∈Ft Y ji

t

)
and

• Y ji
t , i, j = 1, . . . ,n are Bernoulli random variables such that Y ji

t = 1 if entity j
infects entity i between t and t +1,

• Ft is the set of the defaulting entities that are likely to infect other entities be-
tween t and t +1. Here, Ft is the set of entities that have defaulted directly during
this period [like in 8]. Other choices allow inter-periodic contagion effect [see
4, 3].

• f is a contamination trigger function, for example f (x) = 1x≥1 (like in Davis
and Lo’s model) or f (x) = 1x≥2 (several infections may be required to cause
an indirect default, two in this particular case).

Hence, Zi
t = 1 if the entity has been declared in default at the end of period t −

1 (Zi
t−1 = 1) or if, during the period [t, t + 1], it defaults directly (X i

t = 1) or by
infection (C i

t = 1).
Again, each credit entity can default either directly or by infection of other refer-

ences. Nevertheless, two features have been extended: the monoperiodic framework
is changed into a multiperiodic framework, and the contamination trigger function
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is more general than Davis and Lo’s one. From now on, the following notations are
used throughout the paper:

Notation 1 For every t ∈ {1, . . . ,T}, we denote by:

• Γt the set of entities which did not default in the previous periods: Γt =
{

i ∈Ω , Zi
t = 0

}
,

• ND
t (resp. NC

t ) the number of direct (resp. indirect) defaults during the period [t, t +
1[: ND

t = ∑i∈Γt−1
X i

t (resp. NC
t = ∑i∈Γt−1

(1−X i
t )C

i
t ),

• Nt the number of defaults occurred up to time t: Nt = ∑i∈Ω Zi
t = Nt−1 +ND

t +NC
t ,

• NR
t the residual number of non defaulted entities at time t, NR

t = n−Nt .

The aim is to study the law of Nt under the following assumption :

Assumption 1 (Direct defaults and contamination sequence)

• The random vectors
−→
Xt = (X1

t , ...,Xn
t ), t ∈ {1, . . . ,T}, are mutually independent, but

their components are exchangeable.
• The vectors

−→
Yt = (Y 11

t ,Y 12
t , ...,Y nn

t ), t ∈{1, . . . ,T}, are mutually independent.For all

t ∈ {1, . . . ,T}, the variables
{

Y ji
t , ( j, i) ∈Ω 2

}
are exchangeable (and independent

of
{

X i
t , t = 1, . . . ,T, i ∈Ω

}
).

Theorem 2 (Distribution of the Nt , exchangeable case, T periods). Under As-
sumption 1, the distribution of Nt is given by the recursive formula:{

P [N0 = r] = 1r=0 , r=0,. . . ,n
P [Nt = r] = ∑

r
k=0 P [Nt = r Nt−1 = k]P [Nt−1 = k] , r=0,. . . ,n (1.2)

P [Nt = r Nt−1 = k] = Cr−k
n−k

r−k

∑
γ=0

Cγ

r−k

n−k−γ

∑
α=0

Cα
n−k−γ µγ+α, t

n−r

∑
j=0

C j
n−r(−1) j+α

ξ j+r−k−γ,t(γ) ,

and

 µk, t = P
[
X1

t = 1∩ ...∩Xk
t = 1

]
, 1≤ k ≤ n ,

ξk,t(γ) = P
[
C 1

t = 1∩ ...∩C k
t = 1 ND

t = γ
]
, 1≤ k ≤ n− γ, γ ≤ n,

ξ0,t(γ) = 1 (including the case γ = 0).
(1.3)

The coefficients ξk,t(·) may be computed recursively. For more details and proof of
this theorem, see [4]. This formula was obtained using life insurance tools (namely
Waring’s formula). If the number of underlying credit entities is too large, some
difficulties may arise when it turns to compute such a formula:

• First, expression (1.2) involves three successive sums and may lead to large
computation time. When n is large, one needs to pre-compute parts of these
sums to fasten the computation. As a consequence, this expression should be
transformed in order to reduce time complexity.

• Second, this can lead to very large binomial coefficients and to numerical issues
due to the limited floating point precision of the computer.

It can be useful to get special cases of the model leading to straightforward compu-
tations and to a greater stability of the formula.
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1.3 The model

As in the original Davis and Lo’s paper, the contamination trigger function is equal
to f (x) = 1x≥1 and the set Ft of entities likely to contaminate others is here the
set of entities which default directly on period t. We examine here how formulas in
Theorem 2 can be clarified under conditional independence assumption:
-The components of

−→
Xt are conditionally independent given a random variable ΘX ,

-The components of
−→
Yt are conditionally independent given a random variable ΘY .

Consider m indicator random variables X1, . . . ,Xm ∈ {0,1}. Suppose that these ran-
dom variables are mixtures of mutually iid Bernoulli random variables. In other
words, X1, . . . ,Xm are conditionally independent Bernoulli’s with a common ran-
dom parameter Θ . More precisely, for any i ∈Ω , the probability that Xi equals one
is thus given by the latent factor Θ . This corresponds to the situation where each
probability is governed by a common macro-economic environment variable Θ :

P [X1 + · · ·+Xm = k] =
∫ 1

0
Ck

mθ
k(1−θ)m−kdFΘ (θ) , (1.4)

where FΘ denotes the distribution function of Θ . Let us note that the distribution
of the sum X1 + · · ·+ Xm is a Binomial mixture. Of course, numerical integration
techniques may be used to compute expression (1.4). But, as described below, exact
quantities can be extracted when the moments of the underlying factor Θ are known.
To this aim we use Waring’s formula, which is well known in the actuarial field, see
[9] or [10] for an older reference. Remark that, with an underlying random factor Θ ,
P [X1 = 1, . . . ,X j = 1] = E [P [X1 = 1, . . . ,X j = 1 Θ ]] = E

[
Θ j
]

, for j ∈ {1, . . .m}.

Theorem 3 (Waring’s formula, Binomial mixture). If µk = E
[
Θ k
]

is the kth mo-
ment of the underlying factor Θ , then for k ∈ {0, . . . ,m}:

P

[
m

∑
i=1

Xi = k

]
= 1k≤mCk

m

m−k

∑
j=0

C j
m−k(−1) j

µ j+k .

Proof: Some elements of the proof and references are given in [4], and in [9]. �

We will see that it is interesting to express Waring’s formula as a function of an
input vector −→ν = (ν1, . . . ,νn). Particularly, for k,z,m ∈N, m≤ n, Waring’s formula
can be written:

W :
(−→

ν ,k,m
)
7→ 1k≤mCk

m ∑
m−k
j=0 C j

m−k(−1) jν j+k . (1.5)

Some recursive algorithms for calculating Waring’s formula (1.5) are given in [5].
It turns out that these algorithms may significantly improve the computation time.
In the special case where Θ has a Beta distribution with parameters α and β , the
function W can be expressed as a function of α and β instead of −→ν : W (−→ν ,k,m) =
W̃α,β (k,m) := Ck

m
B(α+k,m−k+β )

B(α,β ) where B(α,β ) = Γ (α)Γ (β )
Γ (α+β ) is the Beta function.
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Now consider again the credit risk model described by (1.1). One contribution of
the paper is to express the law of number of defaults in terms of successive evalua-
tion of Waring’s formula (1.5), the latter formula being applied with different vectors
−→
ν . This allows to clarify all quantities that can be pre-computed, and to reduce the
complexity of transition probabilities given by expression (1.2) in Theorem 2. This
helps to find which quantity can be solved analytically in some particular cases.

Theorem 4 (Transition probabilities). With underlying random factors ΘX and
ΘY , the transition probabilities of the total number of defaults is given by :

P [Nt = r Nt−1 = k] =
r−k

∑
γ=0

pD
t (γ,n− k)pC

t (r− k− γ,γ,n− k− γ),

with

{
pD

t (k,m) = P
[
ND

t = k NR
t = m

]
= W (−→µ ,k,m) ,

pC
t (k,z,m) = P

[
NC

t = k ND
t = z, NR

t −ND
t = m

]
= W (

−−→
ξ (z),k,m) ,

and where µk = E
[
Θ k

X
]
, ξk(z) = W (

−−→
h(z),0,k), hi(z) = W (

−→
λ ,0, iz), λk = E

[
Θ k

Y
]

are

the components of (resp.) vectors −→µ ,
−−→
ξ (z),

−−→
h(z),

−→
λ .

Corollary 1 (Transition probabilities, Beta-dirac case). If ΘX is Beta-distributed
with parameters (α,β ) and ΘY = q ∈ [0, 1] (so that Y ji

t are i.i.d.), then

P [Nt = r Nt−1 = k] =
r−k

∑
γ=0

P
[
ND

t = γ NR
t = n− k

]
×P
[
NC

t = r− k− γ ND
t = γ, NR

t −ND
t = n− k− γ

]
with P

[
ND

t = k NR
t = m

]
= W̃α,β (k,m), P

[
NC

t = k ND
t = z, NR

t −ND
t = m

]
=

1k≤mCk
m(xz)k(1− xz)m−k and xz = (1− (1−q)z).

1.4 Calibration of parameters on liquid CDO tranche quotes

In [4], we perform a calibration analysis of model parameters on iTraxx Europe
tranches. Here instead, the focus is put on standardized tranches referencing the 5-
years CDX North American Investment Grade index (CDX.NA.IG henceforth). The
model used for calibration of CDO tranche quotes is such that, for any t ≥ 0, direct
defaults X i

t , i = 1, . . . ,n are Bernoulli mixtures with a common random parameter
that is Beta-distributed with mean p and variance σ2. The infectious transition links
Y i j

t , 1≤ i, j ≤ n are independent Bernoulli random variables with the same constant
mean q. We also consider the case where only one contamination is required to trig-
ger a default. This corresponds to the assumptions of Corollary 1. Using the latter
restrictions, the discrete-time contagion model is stationary and it can be entirely
described by the vector of annual scaled parameters η = (p,σ ,q). Note that there is
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a one-to-one correspondence between parameters (α,β ) associated with the Beta-
distributed variable ΘX in Corollary 1 and its mean and standard deviation (p,σ).
Let us recall that the computation of CDO tranche spreads only involves the expec-

0%-3% 3%-7% 7%-10% 10%-15% 15%-30% index RMSE p∗ σ∗ q∗

Market quotes 55 619 321 204 95 143 - - - -
Calibration 1 30 689 406 240 72 91 0.29 0.0074 0.0133 0.010
Calibration 2 - 568 364 237 90 84 0.21 0.0070 0.0154 0.010
Calibration 3 - 540 335 227 88 - 0.09 0.0011 0.0026 0.094
Calibration 4 55 - - - - 143 0 0.0020 0.0002 0.089

Table 1.1 Market and model spreads (in bp) in the four calibrations and the corresponding root
mean square errors. The [0%-3%] spread is quoted in %.

tation of tranche losses at several time horizons (see [6] for more details regarding
cash-flows of synthetic CDO tranches). In the case where recovery rates are the same
across names and equal to a constant R, it is straightforward to remark that the cur-
rent cumulative loss is merely proportional to the current number of defaults. Then,
Theorem 2 and Corollary 1 can be used properly to compute CDO tranche spreads.
Let us denote by s̃0, s̃1, s̃2, s̃4, s̃5, s̃6 the market spreads associated with (respec-
tively) the CDS index, [0%-3%], [3%-7%], [7%-10%], [10%-15%] and [15%-30%]
standard CDX.NA.IG tranches and by s0(η), s1(η), s2(η), s4(η), s5(η), s6(η), the
corresponding spreads generated by the contagion model using the vector of pa-
rameters η . The calibration process aims at finding out the optimal parameter set
η∗ = (p∗,σ∗,q∗) which minimizes the following least-square objective function
RMSE(η)2 = 1

6 ∑
6
i=1(s̃i− si(η))2/s̃2

i . For both data sets, in order to analyze the cal-
ibration efficiency in a deeper way, we have compared the global calibration with
three alternative ones, where some of the available market spreads were excluded
from the fitting. Here are the calibration procedures we have considered:
-C1: All available market spreads are included in the fitting,
-C2: The equity [0%-3%] tranche spread is excluded,
-C3: Both equity [0%-3%] tranche and CDS index spreads are excluded,
-C4: All tranche spreads are excluded except equity tranche and CDS index spreads.
In all calibrations the interest rate is set to 3%, the payment frequency is quarterly
and the recovery rate is R = 40%. We provide in Table 1.1 model spreads and opti-
mal parameters resulting from the four benchmark calibration processes performed
on March 31st, 2008 CDX quotes. As can be seen from Table 1.1, the calibration of
the three parameters on all market spreads is rather disappointing. This is not sur-
prising, especially given the poor calibration performance of standard factor models
during the crisis, when the fit is achieved on all tranches and index quotes. However,
one can note that the calibration error decreases when we subsequently exclude the
equity tranche quote and the index quote in Calibrations 2 and 3. Unsurprisingly,
as illustrated by results from Calibration 4, the fit on equity and index spreads only
is perfect. We have checked that this is actually the case for all tranches when they
are jointly fitted with the index. This can be seen as a fundamental required behav-
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ior of the model since we try to fit three parameters on two market quotes. Let us
recall however that the base correlation framework had some difficulties to fit the
super-senior tranches in the same period [see 1].

Conclusion: In this paper, we studied a particular specification of an infectious
model. In our model each entity can default directly or can be infected by another
defaulted entity. We analyzed the case of conditional independence of direct de-
faults indicators and of infections indicators. This allows us to obtain some formu-
las for the distribution of the number of defaults that can be applied even with large
credit portfolios. This result paves the way to some operational applications regard-
ing the pricing of CDO tranches. We then consider the fit of model parameters on
CDX.NA.IG index quotes in March 2008. This allows to exploit the dynamic fea-
ture of the model and illustrate its tractability when the number of reference entities
is large (and equal to 125). We can remark that, for all calibration procedures, the
dependence among direct default events is exacerbated by a significant level of in-
fectious risk, as can be expected during this distressed period.
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