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Introduction

What is understood as a yield-curve in this presentation ?

Term-structure construction consists in finding a function

T → P(t0,T )

given a small number of market quotes S1, . . . , Sn

Market information only reliable for a small set of liquid products with
standard characteristics/maturities

We have to rely on interpolation/calibration schemes to construct the
curve for missing maturities
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Introduction

Andersen (2007), curves based on tension splines

Le Floc’h (2012),
examples of one-day

forward curves
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Introduction

What is a good yield curve construction method ? (Hagan and West (2006))

Ability to fit market quotes

Arbitrage freeness

Smoothness

Locality of the interpolation method

Stability of forward rate

Consistency of hedging strategies : Locality of deltas ? Sum of sequential
deltas close enough to the corresponding parallel delta ? (Le Floc’h (2012))
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Market-fit condition

At time t0, the term-structure T → P(t0,T ) is built from market quotes of
standard products

n : number of products

S = (S1, . . . , Sn) : set of market quotes at t0

T = (T1, . . . ,Tn) : corresponding set of increasing maturities

t = (t1, · · · , tm) : payment time grid

The two time grids T and t coincide at indices pi such that tpi = Ti
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Market-fit condition

Let P = (P(t0, t1), . . . ,P(t0, tm))′ be the vector formed by the values of the
curve at payment dates t1, . . . , tm

Assumption : Linear representation of present values

Presents values of products used in the curve construction have a linear
representation with respect to P

For i = 1, . . . , n
pi∑

k=1

AikP(t0, tk) = Bi

where

A = (Aij ) is a n ×m matrix with positive coefficients

B = (Bi ) is a n × 1 matrix with positive coefficients

A and B only depend on current market quotes S, on standard maturities
T, on payment dates t and on products characteristics.
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Market-fit condition

Market-fit condition

The market-fit condition can be restated as a rectangular system of linear
equations

A · P = B

where

P = (P(t0, t1), . . . ,P(t0, tm))′

A is a n ×m matrix with positive coefficients

B is a n × 1 matrix with positive coefficients

A and B only depend on current market quotes S, on standard maturities
T, on payment dates t and on products characteristics.
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Market-fit condition

Example 1 : Corporate or sovereign debt yield curve

Si : market price (in percentage of nominal) at time t0 of a bond with
maturity Ti

ci : fixed coupon rate

t1 < . . . < tpi = Ti : coupon payment dates, δk : year fraction of period
(tk−1, tk)

ci

pi∑
k=1

δkP
B(t0, tk) + PB(t0,Ti ) = Si

where PB(t0, tk) represents the price of a (fictitious default-free) ZC bond with
maturity tk
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Market-fit condition

Example 2 : Discounting curve based on OIS

Si : par rate at time t0 of an overnight indexed swap with maturity Ti

t1 < · · · < tpi = Ti : fixed-leg payment dates (annual time grid)

δk : year fraction of period (tk−1, tk)

Si

pi−1∑
k=1

δkP
D(t0, tk) + (Siδpi + 1)PD(t0,Ti ) = 1, i = 1, ..., n

where PD(t0, tk) is the discount factor associated with maturity date tk
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Market-fit condition

Example 3 : credit curve based on CDS

Si : fair spread at time t0 of a credit default swap with maturity Ti

t1 < · · · < tp = Ti : premium payment dates, δk : year fraction of period
(tk−1, tk)

R : expected recovery rate of the reference entity

Si

pi∑
k=1

δkP
D(t0, tk)Q(t0, tk) = −(1− R)

∫ Ti

t0
PD(t0, u)dQ(t0, u)

where u → Q(t0, u) is the Ft0 -conditional (risk-neutral) survival distribution of
the reference entity.

We implicitly assume here that recovery, default and interest rates are
stochastically independent.
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Market-fit condition

Example 3 : credit curve based on CDS (cont.)

Using an integration by parts, the survival function u → Q(t0, u) satisfies a
linear relation :

Si

pi∑
k=1

δkP
D(t0, tk)Q(t0, tk) + (1− R)PD(t0,Ti )Q(t0,Ti )

+ (1− R)

∫ Ti

t0
f D(t0, u)PD(t0, u)Q(t0, u)du = 1− R

where f D(t0, u) is the instantaneous forward (discount) rate associated with
maturity date u.
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Arbitrage-free bounds

We studied two types of curves :

Interest-rate curves : P = PB (price of zero-coupon bond), P = PD

(discount factors)

Credit curves : P = Q (risk-neutral survival probability)

Arbitrage-free condition

A curve T → P(t0,T ) is said to be arbitrage-free if the two following
conditions hold

P(t0, t0) = 1

T → P(t0,T ) is a non-increasing function
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Arbitrage-free bounds

Market fit condition :
p1∑

k=1

AikP(t0, tk) + · · ·+
pi∑

k=pi−1+1

AikP(t0, tk) = Bi

Arbitrage-free inequalities :


P(t0,T1) 6 P(t0, tk) 6 1 for 1 6 k 6 p1

...
P(t0,Ti ) 6 P(t0, tk) 6 P(t0,Ti−1) for pi−1 + 1 6 k 6 pi − 1

Areski Cousin, ISFA, Université Lyon 1 Model Risk Embedded in Yield-Curve Const. Meth. 13/35



Arbitrage-free bounds

Proposition (arbitrage-free bounds)

For i = 1, . . . , n,

Pmin(t0,Ti ) 6 P(t0,Ti ) 6 Pmax(t0,Ti )

where

Pmin(t0,Ti ) =
1

Aipi

Bi −
i−1∑
j=1

HijP(t0,Tj−1)− (Hii − Aipi )P(t0,Ti−1)


Pmax(t0,Ti ) =

1
Hii

Bi −
i−1∑
j=1

HijP(t0,Tj )


and where Hij :=

∑pj
k=pj−1+1 Aik
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Arbitrage-free bounds
Iterative computation of model-free bounds

Step 1 :
P̂min(t0,T1) 6 P(t0,T1) 6 P̂max(t0,T1)

where

P̂min(t0,T1) =
1

A1p1
(B1 − (H11 − A1p1))

P̂max(t0,T1) =
B1

H11

Step 2 : For i = 2, . . . , n,

P̂min(t0,Ti ) 6 P(t0,Ti ) 6 P̂max(t0,Ti )

where

P̂min(t0,Ti ) =
1

Aipi

Bi −
i−1∑
j=1

Hij P̂max(t0,Tj−1)− (Hii − Aipi )P̂max(t0,Ti−1)


P̂max(t0,Ti ) =

1
Hii

Bi −
i−1∑
j=1

Hij P̂min(t0,Tj )


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Arbitrage-free bounds : OIS discount curves

We consider OIS par rates as of t0 = May 31st 2013

Market quotes S available for n = 14 maturities T = (1y , 2y , . . . , 10y ,
15y , 20y , 30y , 40y)

t = (1y , 2y , . . . , 10y , 11y , . . . , 40y) : payment time grid

A is a 14× 40 rectangle matrix, B is a 14× 1 column vector

We are looking for bounds on OIS discount factors PD(t0,Ti ),
i = 1, . . . , n

Areski Cousin, ISFA, Université Lyon 1 Model Risk Embedded in Yield-Curve Const. Meth. 16/35



Arbitrage-free bounds : OIS discount curve

Bounds for OIS discount factors PD(t0,Ti ) are sharp
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Input data : OIS swap rates as of May, 31st 2013
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Arbitrage-free bounds : OIS discount curves

Bounds for the associated discount rates
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Input data : OIS swap rates as of May, 31st 2013, − 1
T log(PD(t0,T ))
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Arbitrage-free bounds : OIS discount curves

Range of arbitrage-free market-consistent OIS discount curves
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Input data : OIS swap rates as of May, 31st 2013
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Arbitrage-free bounds : CDS-implied default curves

We consider AIG CDS spreads as quoted at t0 = Dec 17, 2007

Market quotes S available for n = 4 maturity times T = (1y , 3y , 5y , 10y)

t = the whole time interval (0, 10y)

A is a 4×∞ rectangle matrix (the present value of CDS protection legs
involves an integral instead of a sum)

B is a 4× 1 column vector

We are looking for bounds on risk-neutral survival probabilities Q(t0,Ti ),
i = 1, . . . , n
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Arbitrage-free bounds : CDS-implied default curves
Range of market-consistent survival curves
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Bounds for CDS implied survival probabilities

Input data : CDS spreads of AIG as of December 17, 2007, R = 40%,
PD(t0, t) = exp(−3%(t − t0))
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How to construct admissible yield curves ?

Mean-reverting term-structure models as generators of admissible yield curves

The risk-neutral dynamics of short-term interest rates (or default intensities) is
assumed to follow either

a OU process driven by a Lévy process

dXt = a(b(t; p,T,S)− Xt)dt + σdYct ,

where Y is a Lévy process with cumulant function κ and parameter set pL

or an extended CIR process

dXt = a(b(t; p,T,S)− Xt)dt + σ
√

XtdWt ,

where W is a standard Browian motion

Depending on the context, p = (X0, a, σ, c, pL) will denote the parameter set of
the Lévy-OU process and p = (X0, a, σ) the parameter set of the CIR process
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How to construct admissible yield curves ?

In both cases, b is represented by a step function :

b(t; p,T,S) = bi (p,T,S) for Ti−1 < t 6 Ti , i = 1, . . . , n

The vector b = (b1, . . . , bn) solves a triangular system of non-linear equations.

Market-fit linear conditions

The rectangular market-fit system translates into a triangular system of
non-linear equations

A · P(b) = B

where

P(b) = (P(t0, tk ; b))k=1,...,m is the m × 1 vector of discount factors, ZC
bond price or survival probabilities (depending on the context).

A is a n ×m matrix, B is a n × 1 matrix

A and B only depend on current market quotes S, on standard maturities
T and on products characteristics.
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How to construct admissible yield curves ?

Proposition (Discount factors in the Lévy-OU approach)

Let Ti−1 < t 6 Ti . In the Lévy-OU model, the current value of the discount
factor or of an assimilated quantity with maturity time t is given by

P(t0, t; b) := E
[
exp

(
−
∫ t

t0
Xudu

)]
= exp (−I (t0, t, b))

where

I (t0, t, b) := X0φ(t − t0) +
i−1∑
k=1

bk (ξ(t − Tk−1)− ξ(t − Tk))

+ biξ(t − Ti−1) + cψ(t − t0)

and functions φ, ξ and ψ are defined by

φ(s) :=
1
a
(
1− e−as) (1)

ξ(s) := s − φ(s)

ψ(s) := −
∫ s

0
κ (−σφ(s − θ)) dθ
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How to construct admissible yield curves ?

Proposition (Discount factors in the CIR approach)

Let Ti−1 < t 6 Ti . In the CIR model, the current value of the discount factor
or of an assimilated quantity with maturity time t is given by

P(t0, t; b) := E
[
exp

(
−
∫ t

t0
Xudu

)]
= exp (−I (t0, t, b))

where

I (t0, t, b) := X0ϕ(t − t0) +
i−1∑
k=1

bk (η(t − Tk−1)− η(t − Tk)) + biη(t − Ti−1)

and functions ϕ and η are defined by

ϕ(s) :=
2(1− e−hs)

h + a + (h − a)e−hs (2)

η(s) := 2a
[

s
h + a

+
1
σ2 log

h + a + (h − a)e−hs

2h

]
where h :=

√
a2 + 2σ2
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How to construct admissible yield curves ?

Construction of (b1, . . . , bn) by a bootstrap procedure

For any i = 1, . . . , n, the present value of the instrument with maturity Ti

only depends on b1, . . . , bi

is a monotonic function with respect to bi

The vector b = (b1, . . . , bn) satisfies a triangular system of non-linear equations
that can be solved recursively :

Find b1 as the solution of

p1∑
j=1

A1jP(t0, tj ; b1) = B1

Assume b1, . . . , bk−1 are known, find bk as the solution of

pk∑
j=1

AkjP(t0, tj ; b1, . . . , bk) = Bk
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How to construct admissible yield curves ?

Proposition (smoothness condition)

A curve t → P(t0, t) constructed from the previous approach is of class C1 and
the corresponding forward curve (or default density function) is continuous.

Proof : Let b(·) be a deterministic function of time, instantaneous forward
rates are such that

Lévy-driven OU

f (t0, t) = X0e−a(t−t0) + a
∫ t

t0
e−a(t−u)b(u)du − cκ(−σφ(t − t0))

where φ is defined by (1)

extended CIR

f CIR(t0, t) = X0ϕ
′(t − t0) + a

∫ t

t0
ϕ′(t − u)b(u)du

where ϕ′ is the derivative of ϕ given by (2)
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How to construct admissible yield curves ?
Assume that a curve has been constructed from a Lévy-OU term-structure
model with positive parameters (X0, a, σ, c, pL) :

f (t0, t) = X0e−a(t−t0) + a
i−1∑
k=1

bk (φ(t − Tk−1)− φ(t − Tk))

+ abiφ(t − Ti−1)− cκ(−σφ(t − t0))

for any Ti−1 ≤ t ≤ Ti , i = 1, . . . , n.

Proposition (arbitrage-free condition in the Lévy-OU approach)

Assume that the derivative of the Lévy cumulant κ′ exists and is strictly
monotonic on (−∞, 0). The curve is arbitrage-free on the time interval (t0,Tn)
if and only if, for any i = 1, . . . , n, f (t0,Ti ) > 0 and one of the following
condition holds :

∂f
∂t

(t0,Ti−1)
∂f
∂t

(t0,Ti ) ≥ 0

∂f
∂t

(t0,Ti−1)
∂f
∂t

(t0,Ti ) < 0 and f (t0, ti ) > 0 where ti is such that
∂f
∂t

(t0, ti ) = 0,
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How to construct admissible yield curves ?

Assume that a curve has been constructed from an extended CIR
term-structure model with positive parameters (X0, a, σ) :

f CIR(t0, t) = X0ϕ
′(t−t0)+a

i−1∑
k=1

bk (ϕ(t − Tk−1)− ϕ(t − Tk))+abiϕ(t−Ti−1)

for any Ti−1 ≤ t ≤ Ti , i = 1, . . . , n.

Proposition (arbitrage-free condition in the CIR approach)

The constructed curve is arbitrage-free if, for any i = 1, · · · , n, the implied bi is
positive
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How to construct admissible yield curves ?
Set of admissible OIS discount and forward curves : Lévy-OU short rates

Parameters : a = 0.01, σ = 1, X0 = 0.063% (fair rate of IRS vs OIS 1M). The
Lévy driver is a Gamma subordinator with parameter λ = 1/50bps (mean jump
size of 50 bps). c = {1, 10, 20, . . . , 100}
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Input data : OIS swap rates as of May, 31st 2013
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How to construct admissible yield curves ?
Set of admissible survival curves : CIR intensities

Parameters : a = σ = 1, 100 · X0 = {0.01, 0.25, 0.49, 0.73, 0.97,
1.21, 1.45, 1.69, 1.94, 2.18, 2.42}
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Input data : CDS spreads of AIG as of December 17, 2007, R = 40%,
PD(t0, t) = exp(−3%(t − t0))
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Perspectives

The proposed framework could be extended or used in several directions :

Yield-curve diversity impact on present values (PV) and hedging
stategies ?

max
i,j
‖PV (Ci )− PV (Cj )‖p

where the max is taken over all couples of admissible curves (Ci ,Cj )

Risk management in the presence of uncertain parameters ?

dXt = ã(b(t; ã, σ̃,T,S)− Xt)dt + σ̃
√

XtdWt ,

where Range(ã, σ̃) ⊂ {(a, σ) | b(t; a, σ,T,S) ≥ 0 ∀t}

Extension to multicurve environments ?

Impact on the assessment of counterparty credit risk (CVA, EE, EPE, ...) ?
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Cumulant function of some Lévy processes

Cumulant

Brownian motion κ(θ) = θ2

2

Gamma process κ(θ) = − log
(
1− θ

λ

)
Inverse Gaussian process κ(θ) = λ−

√
λ2 − 2θ
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