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@ Financial term-structures describes the evolution of some financial or
economic quantities as a function of time horizon.

@ Examples : interest-rates, bond yields, credit spreads, implied default
probabilities, implied volatilities.

@ Applications : valuation of financial and insurance products, risk
management
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The term-structure construction problem

Several constraints have to be considered

@ Compatibility with market information : at a given date to, the curve
under construction T — P(to, T) shall be compatible with observed prices
of some reference products.

@ Arbitrage-free construction : this translates into some specific shape
properties such as positivity, monotonicity, convexity or bounds on the
curve values

@ Additional conditions can be required : minimum degree of smoothness,
control of local convexity
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The term-structure construction problem

1) Compatibility with market information :

@ At time tp, we observe the market quotes Si,...,S, of n liquidly traded
instruments

@ The values of these products depend on the value of the curve at m input
locations X = (71,...,7m)

The vector of output values P(to, X) := (P(to, 71), ..., P(to,7m)) " satisfies a
linear system of the form
A- P(to,X) =b,
where
@ Ais a n X m real-valued matrix

@ b is a n-dimensional column vector

n < m — indirect and partial information on the curve values at 71,...,7m

2) No-arbitrage assumption :

T — P(to, T) is typically a monotonic bounded function
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Range of arbitrage-free OIS discount curves

We observe the quoted par rates S; of an OIS with maturities T;, i=1,...,n

1) Compatibility with market quotes :

The curve T — P(to, T) of OIS discount factors is such that

pi—1
Si > kP(to, ti) + (Sidp, + 1) P(to, Ti) =1, i=1,..,n

k=1
@t < < tp, = T;: fixed-leg payment dates (annual time grid)
@ Jy : year fraction of period (tk—1, t«)

2) No-arbitrage assumption :

T — P(to, T) is a decreasing function such that P(to, to) =1
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Range of arbitrage-free OIS discount curves

@ n = 14 liquidly traded maturities 1,2, ..., 10,15, 20, 30, 40 years.
@ m = 40 points involved in the market-fit linear system
@ No-arbitrage bounds on OIS discount factors

Bounds for OIS discounting curves
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Input data : OIS swap rates as of May, 31st 2013.
Source : Cousin and Niang (2014)
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Range of arbitrage-free CDS-implied survival functions

We observe at time to the fair spreads S; of a CDS with maturities T;,
i=1,...,n

1) Compatibility with market quotes :

The curve T — P(to, T) of (risk-neutral) survival probabilities is such that

S ZékD(to,tk)P(to,tk) =—(1- R)/ (to, u)dP(to,u), i=1,...n

@ t; <--- < tp= T;: trimestrial premium payment dates, dx : year fraction
of perlod (tk—1, t)

@ D(to, T) is the discount factor associated with maturity date T

@ R : expected recovery rate of the reference entity

2) No-arbitrage assumption :

T — P(to, T) is a decreasing function such that P(to,t) =1
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Range of arbitrage-free CDS-implied survival functions

@ n = 4 liquidly traded maturities 3,5,7,10 years.
@ m = 40 points involved in the market-fit linear system

@ No-arbitrage bounds on the issuer implied survival distribution function

Bounds for CDS implied survival probabilities
1 T T T T T
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CDS implied survival probability
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Input data : CDS spreads of AIG as of December 17, 2007, R = 40%,
D(t, T) =exp(—3%(T — t))
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From spline interpolation to kriging

In practice, financial term-structures are constructed using deterministic
interpolation techniques.

@ Parametric approaches : Nelson-Siegel or Svensson models (used by most
central banks)

@ Non-parametric interpolation methods : shape-preserving spline techniques
(lack of interpretability but better ability to fit the data).

Could we propose an arbitrage-free interpolation method that additionally
allows for quantification of uncertainty ?
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Classical kriging

A function f is only known at a limited number of points x1, ..., x,
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Classical kriging

The (unknown) function f is assumed to be a sample path of a Gaussian
process Y
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Classical kriging

Definition : Gaussian process (GP) or Gaussian random field

A Gaussian process is a collection of random variables, any finite number of
which have (consistent) joint Gaussian distributions.

A Gaussian process (Y(x),x € Rd) is characterized by its mean function
w:xeR? — E(Y(x)) e R.
and its covariance function

K :(x,x') € R x R" — Cov(Y(x), Y(x')) € R.

Table: Some popular covariance functions K(x, x’) used in 1D kriging methods.

Name Expression Class
Gaussian o2 exp ,(X;;Z')z >
Matérn 5/2 o2 (1 + M + 5(X3—0§’)2 exp _% o2
Matérn 3/2 o2 (1+ ﬁ\xf—x'\) exp (_%—x/l) ct
Exponential o2 exp (_%) c°
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Classical kriging

The estimation of f relies on the conditional distribution of Y given the
observed values y; = f (x;) at points x;, i =1,...,n.
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Classical kriging

o X = (xi,... ,x,,)T € R"™9 : some design points
@ y=(y1,...,yn) €R": observed values of f at these points
® Y(X)=(Y(x1),...,Y(xa))" : vector composed of Y at point X

The conditional process is still a Gaussian Process

Let Y be a GP with mean p and covariance function K. The conditional
process Y | Y(X) =y is a GP with mean function

n(x) = p(x) + k(x) 'Ky —p), x€R
and covariance function K given by
K(x,x') = K(x,x') — k(x) TK'k(x'), x,x" €R?
X

where p = p(X) = (u(xl) ..,u(xn)) K is the covariance matrix of Y(X)
and k(x) = (K (x,x1),. K (x, x,,))
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Extension to linear equality constraints

Recall that, in our term-structure construction problem, the (unknown) real
function f satisfies some linear equality constraints of the form

A-f(X) = b, (1)

where
@ A is a given matrix of dimension n x m
® X =(xi,...,xm) €R™?
o f(X)=(f(x1),...,f(xm)) €R™
@ beR”
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Extension to linear equality constraints

® X =(xi,...,xn)" € R™: some design points
@ b= (b1,...,b,)" €R": right-hand side of the linear system
o Y(X)=(Y(x),...,Y(xm)) : vector composed of Y at point X

The conditional process is still a Gaussian Process

Let Y be a GP with mean p and covariance function K. The conditional
process Y | AY(X) = b is a GP with mean function

=il
n(x) = u(x) + (Ak(x))" (ARAT) " (b= Ap), x€R?
and covariance function K given by
= -1
K(x,x') = K(x,x) — (Ak(x)) " (AKAT) Ak(x'), x,x €R?

where pu = (X)) = (u(x1), ..., (xm)) ", K is the covariance matrix of Y(X),
k(x) = (K (x,x1) ..., K (x,xm)) "
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Extension to monotonicity constraints

New formulation of the problem : estimation of an unknown function f given
that

{ A-f(X)=b
feM

where M is the set of (say) non-increasing functions.

Problem : The conditional process is not a Gaussian process anymore.

@ How to cope with the infinite-dimensional monotonicity constraints ?

@ Which estimator could we propose for the term-structure ?
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Extension to monotonicity constraints (1D case)

Proposed methodology : On an interval D = [x, X] of R, we construct a
finite-dimensional approximation of Y for which the monotonicity constraint is
easy to check.

@ Regular subdivision ug < ... < uy of D with a constant mesh ¢

@ Set of increasing basis functions (¢i)i=o,... v defined on this subdivision

hi(x) = max (1 - 2541 o) 61(x) = [ hi(u)du
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Extension to monotonicity constraints (1D case)

Proposition (Maatouk and Bay, 2014b)

Let Y be a zero-mean GP with covariance function K and with almost surely
differentiable paths.

@ The finite-dimensional process YV defined on D by

N

YV (x) = Y (w) + Z Y’ (4);(x)

j=0

uniformly converges to Y, almost surely.

@ Y" is non-decreasing (resp. non-increasing) on D if and only if
Y'(uj) > 0 (resp. Y'(uj) <0) forall j=0,...,N.

o Let & := (Y (wo), Y'(o),..., Y (un))", then & ~ N(0,T") where

. K (uo, uo) S8 (uo, uj)
v _

2
%(Uhuo) aaxai/(uhuj) 0<i j<N
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Extension to monotonicity constraints (1D case)

For a given covariance function K, we assume that the unknown function f is a
sample path of the GP

N
Y'(x) =0+ &ei(x),  xeD,
j=0
where € := (1,&0,...,En) " ~ N(0,TV).
Kriging f is equivalent to find the conditional distribution of YV given

A-YNX)=b linear equality condition
£ <0,j=0,...,N monotonicity constraint
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Extension to monotonicity constraints (1D case)

Or equivalently, to find the distribution of the truncated Gaussian vector
€ ~ N(0,TV) given

A-d.-£=b linear equality condition
£ <0,j=0,...,N monotonicity constraint

where ® is a m x (N + 2) matrix defined as

& = 1 fori=1,...,mandj=1,
MUl ¢j—2(x) fori=1,....mandj=2,... N+2.
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Extension to monotonicity constraints (1D case)

Which estimator could we use for 7
We consider the mode of the truncated gaussian process (most probable path) :
N
M (x | A b) = v+ vids(x),
j=0

where v = (v, 10,...,vn)" € RV*2 s the solution of the following convex
optimization problem :

v=ss i (57 (™) ).
with
e C={¢eR"? . ¢<0,j=0,...,N}
o Z(A,b)={¢ eR"™? : A-d-¢=0b}
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Extension to monotonicity constraints (1D case)

Efficient simulation of the truncated Gaussian vector

1) Simulate a truncated vector £ given the linear equality constraint :

Z~{E|B-E=bl~ N ((BrN)T (BI'NBT)A bV — (Br“’)T (BI'NBT)A BI’N>

where B=A- ¢.
2) Simulate
(Z1§<0,j=0,...,N}~{€|B-£=band & <0,j=0,....N}

by an accelerated rejection sampling method (we use the method proposed in
Maatouk and Bay, 2014a)

3) The corresponding sample curves YV(-) = n + ZJ.N:O &i(-) satisfies the
constraints on the entire domain D.
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Kriging of OIS discount curves

@ We compare two covariance functions : Gaussian and Matérn 5/2
@ Hyper-parameters 6 and o are estimated using cross-validation

@ Comparison with Nelson-Siegel and Svensson curve fitting
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Discount curves. N = 50, 100 sample paths. Left : Gaussian covariance
function. Right : Matérn 5/2 covariance function. OIS data of 03/06/2010.
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Kriging of OIS discount curves

Corresponding spot rate curves : — log P(x)
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Spot rate curves. Left : Gaussian covariance function. Right : Matérn 5/2
covariance function. OIS data of 03/06/2010. The black solid line is the most
likely spot rate curve —2 log M{ (x | A, b).
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Kriging of OIS discount curves

Corresponding forward rate curves : —d% log P (x)
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Spot rate curves. Left : Gaussian covariance function. Right : Matérn 5/2
covariance function. OIS data of 03/06/2010. The black solid line is the most
likely forward rate curve —< log M¥ (x | A, b).
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Kriging of OIS discount curves (2D)

The previous approach can be extended in dimension 2.

Dicount curves. OIS discount factors as a function of time-to-maturities and
quotation dates.
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Kriging of CDS-implied default distribution

Implied survival function of the Russian sovereign debt
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CDS implied survival curves. N = 50, 100 sample paths. Left : Gaussian
covariance function. Right : Matérn 5/2 covariance function. CDS spreads as of
06/01/2005.
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Kriging of CDS-implied default distribution (2D)

The previous approach can be extended in dimension 2.

Survival curves. CDS implied survival probabilities as a function of
time-to-maturities and quotation dates.
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@ Impact of curve uncertainty on the assessment of related products and
their associated hedging strategies

@ What if the underlying market quotes are not reliable due to e.g. market
illiquidity (data observed with a noise) ?

@ Kriging of arbitrage-free volatility surfaces?
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Kriging of arbitrage-free volatility surface
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Thanks for your attention.
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