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Kriging of financial term-structures

Motivation

@ Financial term-structures describes the evolution of some financial or
economic quantities as a function of time horizon.

@ Examples : interest-rates, bond yields, credit spreads, implied default
probabilities, implied volatilities.

@ Applications : valuation of financial and insurance products, risk
management
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Kriging of financial term-structures

The term-structure construction problem

Several constraints have to be considered

@ Compatibility with market information : at a given date to, the curve
under construction T — P(to, T) shall be compatible with observed prices
of some reference products.

@ Arbitrage-free construction : this translates into some specific shape
properties such as positivity, monotonicity, convexity or bounds on the
curve values

@ Additional conditions can be required : minimum degree of smoothness,
control of local convexity
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Kriging of financial term-structures

The term-structure construction problem

1) Compatibility with market information :

@ At time tp, we observe the market quotes Si,...,S, of n liquidly traded
instruments

@ The values of these products depend on the value of the curve at m input
locations X = (71,...,7m)

The vector of output values P(to, X) := (P(to,71), ..., P(to, 7m)) " satisfies a
linear system of the form
A- P(to,X) = b,
where
@ Ais a n X m real-valued matrix

@ b is a n-dimensional column vector

n < m — indirect and partial information on the curve values at 71,...,7m

2) No-arbitrage assumption :

T — P(to, T) is typically a monotonic bounded function

Areski Cousin, ISFA, Université Lyon 1 Model uncertainty in finance



Kriging of financial term-structures

Range of arbitrage-free OIS discount curves

We observe the quoted par rates S; of an OIS with maturities T;, i=1,...,n

1) Compatibility with market quotes :

The curve T — P(to, T) of OIS discount factors is such that

pi—1

S,‘ Z (5kP(t07 tk) + (Si(sp,- + 1) P(t0> Tl) = 1a i = 17 cey n
k=1

@t < -+ < tp, = T;: fixed-leg payment dates (annual time grid)

@ 0y : year fraction of period (tx—1, tk)

2) No-arbitrage assumption :

T — P(to, T) is a decreasing function such that P(to, to) =1
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Kriging of financial term-structures

Range of arbitrage-free OIS discount curves

@ n = 14 liquidly traded maturities 1,2, ...,10,15, 20, 30, 40 years.
@ m = 40 points involved in the market-fit linear system
@ No-arbitrage bounds on OIS discount factors
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Input data : OIS swap rates as of May, 31st 2013.
Source : Cousin and Niang (2014)
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Kriging of financial term-structures

Range of arbitrage-free CDS-implied survival functions

We observe at time to the fair spreads S; of a CDS with maturities T;,
i=1,...,n

1) Compatibility with market quotes :

The curve T — P(to, T) of (risk-neutral) survival probabilities is such that

Si ZékD(to,tk)P(to,tk) =—(1- R)/ (to, u)dP(to,u), i=1,...,n

@ t; <-+- < tp= T;: trimestrial premium payment dates, Jx : year fraction
of perlod (tk—1, t)

@ D(to, T) is the discount factor associated with maturity date T

@ R : expected recovery rate of the reference entity

2) No-arbitrage assumption :

T — P(to, T) is a decreasing function such that P(to, to) =1
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Kriging of financial term-structures

Range of arbitrage-free CDS-implied survival functions

@ n = 4 liquidly traded maturities 3,5,7,10 years.
@ m = 40 points involved in the market-fit linear system

@ No-arbitrage bounds on the issuer implied survival distribution function

Bounds for CDS implied survival probabilities
T T T T T

CDS implied survival probability

; ; ; ; ; ; ; ; ; ;
0 1 2 3 4 5 6 7 8 9 10
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Input data : CDS spreads of AIG as of December 17, 2007, R = 40%,
D(t, T) =exp(—3%(T —t))
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Kriging of financial term-structures

From spline interpolation to kriging

In practice, financial term-structures are constructed using deterministic
interpolation techniques.

@ Parametric approaches : Nelson-Siegel or Svensson models (used by most
central banks)

@ Non-parametric interpolation methods : shape-preserving spline techniques
(lack of interpretability but better ability to fit the data).

Could we propose an arbitrage-free interpolation method that additionally
allows for quantification of uncertainty ?
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Kriging of financial term-structures

Classical kriging

A function f is only known at a limited number of points xi, ...
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Kriging of financial term-structures

Classical kriging

The (unknown) function f is assumed to be a sample path of a Gaussian
process Y
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Kriging of financial term-structures

Classical kriging

Definition : Gaussian process (GP) or Gaussian random field

A Gaussian process is a collection of random variables, any finite number of
which have (consistent) joint Gaussian distributions.

A Gaussian process (Y(x),x € RY) is characterized by its mean function
w:xeR? — E(Y(x)) e R.
and its covariance function

K:(x,x") € R x RY — Cov(Y(x), Y(X')) € R.

1D kriging kernel K(x,x") Class
Gaussian o2 exp ,(X;;Z')Z >
Matérn 5/2 o2 (1 + % + 5(X3—6>2</)2) exp (_%) 2
Matérn 3/2 o? (1 + %) exp (_\5\%—/\) ct
Exponential o2 exp (_\X*Tj'l> c°
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Kriging of financial term-structures

Classical kriging

The estimation of f relies on the conditional distribution of Y given the
observed values y; = f (x;) at points x;, i =1,...,n.

2.5
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Kriging of financial term-structures

Classical kriging

© X =(xi,...,x)) €R™ : some design points
@ y=(y1,...,yn) €R": observed values of f at these points
® Y(X)=(Y(x1),...,Y(xa))" : vector composed of Y at point X

The conditional process is still a Gaussian Process

Let Y be a GP with mean p and covariance function K. The conditional
process Y | Y(X) =y is a GP with mean function

n(x) = p(x) + k(x) 'Ky —p), xeR’

and covariance function K given by

K(x,x') = K(x,x") — k(x) 'K 'k(x"), x,x eR?
X

where p = p(X) = (/,L(X]_) .. 1u(x2)) ", K is the covariance matrix of Y/(X)
and k(x) = (K (x,x1),. K(X,x,,))—r
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Kriging of financial term-structures

Extension to linear equality constraints

Recall that, in our term-structure construction problem, the (unknown) real
function f satisfies some linear equality constraints of the form

A-f(X)=b, (D

where

@ A is a given matrix of dimension n x m

© X =(x1,...,xn) €R"*
o F(X)=(f(xa),..., (xm)) T €ER"
@ beR"
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Kriging of financial term-structures

Extension to linear equality constraints

® X =(x1,...,xn) €R™: some design points
@ b= (by,..., b,,)T € R" : right-hand side of the linear system

@ Y(X)=(Y(x1),..., Y(xm)) : vector composed of Y at point X

The conditional process is still a Gaussian Process

Let Y be a GP with mean p and covariance function K. The conditional
process Y | AY(X) = b is a GP with mean function

=il
n(x) = u(x) + (Ak(x))" (ARAT) " (b— Ap), x€R?
and covariance function K given by
& -1
K(x,x') = K(x,x) — (Ak(x))" (AKAT) Ak(x'), x,x €R?

where p = (X)) = (u(x1), - .., u(xm)) ", K is the covariance matrix of Y (X),
k(x) = (K (x,x1) ..., K (x,xm)) "
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Kriging of financial term-structures

Extension to monotonicity constraints

New formulation of the problem : estimation of an unknown function f given
that

{A'f(X):b
feM

where M is the set of (say) non-increasing functions.

Problem : The conditional process is not a Gaussian process anymore.

@ How to cope with the infinite-dimensional monotonicity constraints?

@ Which estimator could we propose for the term-structure ?
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Kriging of financial term-structures

Extension to monotonicity constraints (1D case)

Proposed methodology : On an interval D = [x,X] of R, we construct a

finite-dimensional approximation of Y for which the monotonicity constraint is
easy to check.

@ Regular subdivision up < ... < uy of D with a constant mesh ¢

@ Set of increasing basis functions (¢;i)io,...,n defined on this subdivision

hi(x) == max (1 — =4l o (x) = [~ hi(u)d
5 i(x) = i(u)du
x
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Kriging of financial term-structures

Extension to monotonicity constraints (1D case)

Proposition (Maatouk and Bay, 2014b)

Let Y be a zero-mean GP with covariance function K and with almost surely
differentiable paths.

@ The finite-dimensional process Y" defined on D by

N

YH() = Y(wo) + D Y (u)i(x)

j=0

uniformly converges to Y, almost surely.

@ Y" is non-decreasing (resp. non-increasing) on D if and only if
Y'(uj) >0 (resp. Y'(u;) <0) forall j=0,..., N.

o Let & := (Y (o), Y'(to),..., Y (un))", then & ~ N(0,T") where
K (uo, uo) 25 (uo, uy)
=

2
9K (ui, uo) s (ui, u)) 0<ij<N
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Kriging of financial term-structures

Extension to monotonicity constraints (1D case)

For a given covariance function K, we assume that the unknown function f is a
sample path of the GP

N
Y'(x) =0+ &ei(x),  xeD,
j=0
where £ := (1,&0,...,En) " ~ N(0,TV).
Kriging f is equivalent to find the conditional distribution of YV given

A-YNX)=b linear equality condition
£ <0,j=0,...,N monotonicity constraint
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Kriging of financial term-structures

Extension to monotonicity constraints (1D case)

Or equivalently, to find the distribution of the truncated Gaussian vector
€ ~ N(0,TV) given

A-0-£=b linear equality condition
£ <0,j=0,...,N monotonicity constraint
where ® is a m x (N + 2) matrix defined as

&, — 1 fori=1,...,mandj=1,
YT ¢j—2(x) fori=1,....mandj=2...,N+2.
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Kriging of financial term-structures

Extension to monotonicity constraints (1D case)

Which estimator could we use for f?

We consider the mode of the truncated gaussian process (most probable path) :

N
M (x | A, b) = v+ v¢i(x),

Jj=0

T c ]RN+2

where v = (v, v0,...,Un) is the solution of the following convex

optimization problem :

-1
v=ae cECr;ij['TA,b) (%CT (rN) c) '
with
e C={¢eR"? : ¢ <0, j=0,...,N}
o Z(A,b)={¢ RV : A-®.¢£=0b}
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Kriging of financial term-structures

Extension to monotonicity constraints (1D case)

Efficient simulation of the truncated Gaussian vector

1) Simulate a truncated vector £ given the linear equality constraint :

Z~{E|B-E=bl~ N ((Br”)T (BI‘NBT)A b,V — (Br“’)T (BI‘NBT)A BI'N)

where B = A- .
2) Simulate
(Z1§<0,j=0,...,N}~{€|B-£=band & <0,j=0,....N}

by an accelerated rejection sampling method (we use the method proposed in
Maatouk and Bay, 2014a)

3) The corresponding sample curves YV(-) = n + Zszo &;(-) satisfies the
constraints on the entire domain D.
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Kriging of financial term-structures

Kriging of OIS discount curves

@ We compare two covariance functions : Gaussian and Matérn 5/2
@ Hyper-parameters 6 and o are estimated using cross-validation

@ Comparison with Nelson-Siegel and Svensson curve fitting

o o
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Discount curves. N = 50, 100 sample paths. Left : Gaussian covariance
function. Right : Matérn 5/2 covariance function. OIS data of 03/06/2010.
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Kriging of financial term-structures

Kriging of OIS discount curves

Corresponding spot rate curves : —: log P(x)

spot rate
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elson-Siegel
- =+ Nelson-Siegel-Svensson
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I
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Spot rate curves. Left : Gaussian covariance function. Right : Matérn 5/2
covariance function. OIS data of 03/06/2010. The black solid line is the most
likely spot rate curve —2 log MY (x| A, b).
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Kriging of financial term-structures

Kriging of OIS discount curves

Corresponding forward rate curves : — < Iog P (x)
2 ]
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Spot rate curves. Left : Gaussian covariance function. Right : Matérn 5/2
covariance function. OIS data of 03/06/2010 The black solid line is the most
likely forward rate curve —-< log M¥ (x | A, b).
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Kriging of financial term-structures

Kriging of OIS discount curves (2D)

The previous approach can be extended in dimension 2.

Dicount curves. OIS discount factors as a function of time-to-maturities and
quotation dates.
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Kriging of financial term-structures

Kriging of CDS-implied default distribution

Implied survival function of the Russian sovereign debt
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CDS implied survival curves. N = 50, 100 sample paths. Left : Gaussian
covariance function. Right : Matérn 5/2 covariance function. CDS spreads as of
06/01/2005.
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Kriging of financial term-structures

Kriging of CDS-implied default distribution (2D)

The previous approach can be extended in dimension 2.

<2
S5
SRR
N
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Survival curves. CDS implied survival probabilities as a function of
time-to-maturities and quotation dates.
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Kriging of financial term-structures

Perspectives

@ Impact of curve uncertainty on the assessment of related products and
their associated hedging strategies

@ What if the underlying market quotes are not reliable due to e.g. market
illiquidity (data observed with a noise) ?

@ Kriging of arbitrage-free volatility surfaces?
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Kriging of arbitrage-free volatility surface
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Adaptive robust control of Markov decision process

General setting and motivation

@ Robust control may be overly conservative when applied to the true
unknown system

@ We develop an adaptive robust methodology for solving a discrete-time
Markovian control problem subject to Knightian uncertainty

@ We focus on a financial hedging problem, but the methodology can be
applied to any kind of Markov decision process under model uncertainty

@ As in the classical robust case, the uncertainty comes from the fact that
the true law of the driving process is only known to belong to a certain
family of probability laws
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Adaptive robust control of Markov decision process

General setting and motivation

@ T : terminal date of our finite horizon control problem

e 7={0,1,2,..., T} : time grid

o 7' ={0,1,2,..., T — 1} : time grid without last date

@ S ={5;, t €T} : stochastic process that drives the random system

We assume that :
@ S is observable and we denote by F° = (%7, t € T) its natural filtration.

@ The law of S is not known but it belongs to a family of parametrized
distributions P(@) := {PPy,0 € O}, © C R?
@ The unknown (true) law of S is denoted by Pg+ and is such that 6" € @

Model uncertainty occurs if @ # {0}
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Adaptive robust control of Markov decision process

General setting and motivation

We consider the following stochastic control problem
inf Eg- (L .
inf Bo- (L(S. )

where

@ Ais a set of admissible control processes : F°—adapted processes
o={pt, teT'}

@ L is a measurable functional (loss or error to minimize in our case)

Obviously, the problem cannot be dealt with directly since we do not know the
value of 0*
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Adaptive robust control of Markov decision process

General setting and motivation

Robust control problem : Basar and Bernhard (1995), Hansen et al. (2006),
Hansen and Sargent (2008)

JQ&;ESEQ (L(S,))- 2)

@ Best strategy over the worst possible model parameter in ©

@ If the true model is close to the best one, the solution to this problem
could perform very badly
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Adaptive robust control of Markov decision process

General setting and motivation

Strong robust control problem : Sirbu (2014), Bayraktar, Cosso and Pham
(2014)

inf  sup Eq (L(S,¥)), 3)
PEA Qe e vk

@ Wy is the set of strategies chosen by a Knightian adversary (the nature)
that may keep changing the system distribution over time

@ 0¥ VK represents all possible model dynamics resulting from ¢ and when
nature plays strategies in Wx

@ Solution is even more conservative than in the classical robust case

@ No learning mechanism to reduce model uncertainty
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Adaptive robust control of Markov decision process

General setting and motivation

Adaptive control problem : Kumar and Varaiya (1986), Chen and Guo (1991)

For each 6 € O solve :
S&IgquEe(L(SAP))- (4)

@ Let Y be a corresponding optimal control

@ At each time t, compute a point estimate 0: of 6", using a chosen, %7
measurable estimator and apply control value 7.

@ Known to have poor performance for finite horizon problems
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Adaptive robust control of Markov decision process

Hedging under model uncertainty

Problem : Hedging a short position on an European-type option with maturity
T, payoff function ® and underlying asset S with price dynamics

So =50 € (07 OO)7
Stv1 = Zi1 S, teT’
where
@ Z={Z,t=1,..., T} is a non-negative random process
@ Under each measure Py, Z.,1 is independent from %7 for each t € T

@ The true law Py« of Z is not known.
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Adaptive robust control of Markov decision process

Hedging under model uncertainty

Hedging is made using a self-financing portfolio composed of the underlying
risky asset S and of a risk-free asset (with constant value equal to 1).

The hedging portfolio has the following dynamics

V0:v07
Vt+1=Vt+<,0t(5t+1—5t)7 tZO,,T—l

Exact replication is out of reach in our setting (vo may be too small), so that
the nominal control problem (without uncertainty) is

inf e (L(&(ST) = Vr(2)']) .

where [ is a loss function, i.e., an increasing function such that ¢(0) =0
(shortfall risk minimization approach)
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Adaptive robust control of Markov decision process

Adaptive robust control methodology

The methodology relies on recursive construction of confidence regions. We
assume that :

1) A point estimator 0 of 0* can be constructed recursively

8o = 0o,
0ri1 = R(t,0¢,Ze11), t=0,...,T—1

where R(t, c,z) is a deterministic measurable function.

2) An approximate a-confidence region ®; of 6* can be constructed from 0: by
a deterministic rule :

O: = 7(t,6:)

where 7(t,-) : R? — 2° is a deterministic set valued function. The region ©,
should be such that Pg= (6 € ©:) = 1 — a and lim¢—, oo @ = {0"} where the
convergence is understood P?" almost surely, and the limit is in the Hausdorff
metric.
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Adaptive robust control of Markov decision process

Adaptive robust control methodology

We consider the following (augmented) state process
Xe = (S, Vt7é\t)> teT
with state space Ex := Ry x R x R?.
In our hedging problem, X = (S, v,§) is a Markov process with dynamics :

Sty1 =215,
Visr = Vi + 0:S5e(Ziy1 — 1),
§t+1 = R(t,§t72t+1)

We denote by
Q(B | t,x,a,0) :=Ps(Xer1 € B| Xt = x, ¢ = a)

the time-t Markov transition kernel under probability Py when strategy a is
applied
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Adaptive robust control of Markov decision process

Adaptive robust control methodology

Let us denote by
Hy == ((So, Vo, 00), (51, Va,01), ..., (St, Vi, 02)), t €T,
the history of the state process up to time t.
Note that, for any admissible trading strategy ¢, H; is %7 measurable and

H: € H; ;= Ex X Ex X ... X Ex.

t+1 times

We denote by
ht = (x0,X1,...,%:) = (S0, Vo, Co, 51, V1, C1, - - ., St, Vi, Ct)

a realization of H;.
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Adaptive robust control of Markov decision process

Adaptive robust control methodology

A robust control problem can be viewed as a game between a controller and
nature (the Knightian opponent).

The controller plays history-dependent strategies ¢ that belong to
A={(pt)ecr | oe : He > A teT'}

where ¢; is a measurable mapping.

Strong robust case : nature plays history-dependent strategies ¢ that belong to
Wi = {(Ye)eer | - He— 0O, t T’}

Adaptive robust case : nature plays history-dependent strategies v that belong

to

Wy = {(1/’t)t6T’ | s : He > O, t € T’}

where ©; = 7(t, ;) is the a-confidence region of 6* at time t
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Adaptive robust control of Markov decision process

Adaptive robust control methodology

Given that the controller plays ¢ and nature plays v, using lonescu-Tulcea
theorem, we define the canonical law of the state process X on Ey as

QLY (By,...,Br) =
/ Qdxt | T —1,xr—1,07-1(h7—1),¥7-1(h7-1))
B By
Q(dx2 | 1, x1, ¢1(h1),¥1(h)) Qdxa | 0, x0, po(ho), to(ho)).

For a given strategy o, we define

W‘l‘K = {Qho , ’l/J c ‘UK}

and
PV = {QEY, w e wa)
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Adaptive robust control of Markov decision process

Adaptive robust control methodology

The strong robust hedging problem :

inf  sup  Eq ({[(®(S7)— V)"
*’GA@EQ;"AW o ((e(S7) - vr)'])

The adaptive robust hedging problem :

inf sup Eq (¢[(®(ST)— Vr)'])
(PEAQEQ::WA
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Adaptive robust control methodology

Without uncertainty

o*
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Adaptive robust control methodology

Dynamic programming principle

Proposition

The solution ¢* = (¢} (ht))e of

inf E (o} — vt
inf, sup Bo (f[(4(Sr) = V)]
Qe

coincides with the solution of the following robust Bellman equation :
Wr(x) = £[(®(s) = v)'], x=(s,v,0) € Ex,

Wi(x) = inf sup Weia(y)Q(dy | t,x, a,6),
€A ger(t,0) J Ex

for any x = (s,v,0) € Exand t=T —1,...,0.

Note that the optimal strategy at time t is such that ©f(h:) = ©f (x¢).
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Example : uncertain log-normal model

We consider that the stock price is driven by an uncertain log-normal model

St+1 = Zt+15t
where Z; is an iid sequence such that In Z; Y N(u*, (c*)?).

The MLE 6; = (fir, 52) of the unknown parameter 6* = (1*, (¢*)?) can be
expressed in the following recursive way :

~ t
Pet1 = 1,Ltt + ——InZ1,

1
t+ t+1

~ t t ,\
Ul?+1 = t+1o—$+ (t+1)2 (.u‘filn Zf+1)2a

with i1 =InZy = In 5; and 67 = 0.
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Example : uncertain log-normal model

Due to asymptotic normality of the MLE 0, = (fit, 52), we have

t . 12 t 2 x\2y2  d 2
a?(lh M)‘f'ﬁ"t (U))H—OO>X2

So that, if ke is the (1 — a)—quantile of the x3 distribution,
©. = 7(t,7,52) = {(Wf) €R?: aiz(ﬁ WP % & — 0?2 < na}
is an approximate a-confidence region of 6%, i.e., ®; is such that
Py« (0" €O:) =1 -«

[See Bielecki et al. (2016) for more details]
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Example : uncertain log-normal model

The adaptive robust control problem can be solved using the following dynamic
programming principle :
Wr(x) = £[(®(s) = V)], x=(s,v,5,5°) € Ex,

Wt(X) = inf sup WH'l(.y)Q(dy ‘ t, X, a;u,oz)

€A (u,02)er(t,7,52) J Ex

where x = (s,v,[1,6°) € Ex =Ry xRxRxR;, t=T~—1,...,0
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Example : uncertain log-normal model

The integral in the previous slide can be written as
/ Waa (€777, v + as(e"™9% — 1), R(t, 11,5, i + 02)) 6(2)dz
R
where ¢ is the density of the standard normal distribution and R is such that

(- y)2>

t G 1 t E;_\2
P R L

P! o t
R(t,/.t,(f,y)—( +(t+1)2
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Perspectives

@ Numerically solve Bellman equation for the considered hedging problem :
challenging issue due to the curse of dimensionality (optimal quantization,
approximate dynamic programming could be used)

@ Compare hedging performance with other approaches : control without
uncertainty, standard robust, adaptive robust, Bayesian adaptive robust
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Thanks for your attention.
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