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Motivation

Financial term-structures describes the evolution of some financial or
economic quantities as a function of time horizon.

Examples : term-structure of interest-rates, bond yields, credit spreads,
implied default probabilities, stock return implied volatilities.

Applications : valuation of financial and insurance products, risk
management
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The term-structure construction problem

Several constraints have to be considered

Compatibility with market information : at a given date t0, the curve
under construction T → P(t0,T ) shall be compatible with observed prices
of some reference products. =⇒ Static problem.

Arbitrage-free construction : this translates into some specific shape
properties such as positivity, monotonicity, convexity or bounds on the
curve values

Additional conditions can be required : minimum degree of smoothness,
control of local convexity
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The term-structure construction problem

Example 1 : zero-coupon yield curve

time-to-maturity (year)
0 10 20 30 40 50 60

ze
ro

-c
ou

po
n 

ra
te

 (
%

)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4 zero-coupon yield curve based on french OAT quotes of April 29, 2016
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1.1 Discount factors from french OAT quotes of April 29, 2016

Curves extracted from quotes of french OAT bonds as of April 29, 2016.
Source : “Comité de Normalisation Obligataire” (CNO).
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The term-structure construction problem

Example 1 : zero-coupon yield curve

The zero-coupon yield for time horizon T is defined as
Y (t0,T ) = − 1

T−t0
ln (P(t0,T )) where P(t0,T ) is the price at time t0 of

a (default-free) zero-coupon bond with maturity T

However, T → P(t0,T ) is not directly observed : we only known
information on this curve through market prices of some coupon-bearing
bonds.

Let S1, . . . , Sn be observed prices at time t0 of the issuer traded coupon
bonds with maturity T1, . . . ,Tn

Under no-arbitrage condition, the observations Si , i = 1, . . . , n provides an
information on T → P(t0,T ) in the form of a linear system.
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The term-structure construction problem

Example 1 : zero-coupon yield curve (cont.)

Si : market price (in percentage of nominal) at time t0 of a bond with
maturity Ti

ci : coupon rate

t1 < . . . < tpi = Ti : coupon payment dates, δk : year fraction of period
(tk−1, tk)

The no-arbitrage assumption gives the following linear relation

ci

pi∑
k=1

δkP(t0, tk) + P(t0,Ti ) = Si

In addition, the arbitrage-free curve T → P(t0,T ) is a decreasing function
such that P(t0, t0) = 1
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The term-structure construction problem

Example 2 : Discount curve based on overnight-indexed-swaps (OIS)

Si : par rate at time t0 of an OIS with maturity Ti

t1 < · · · < tpi = Ti : fixed-leg payment dates (annual time grid)

δk : year fraction of period (tk−1, tk)

Si

pi−1∑
k=1

δkP(t0, tk) + (Siδpi + 1)P(t0,Ti ) = 1, i = 1, ..., n

where P(t0,T ) is the OIS discount factor with maturity T

In addition, the arbitrage-free curve T → P(t0,T ) is a decreasing function
such that P(t0, t0) = 1
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The term-structure construction problem

Example 3 : Default time distribution implied from CDS spreads

Si : fair spread at time t0 of a credit default swap with maturity Ti

t1 < · · · < tp = Ti : trimestrial premium payment dates, δk : year fraction
of period (tk−1, tk)

D(t0,T ) is the discount factor associated with maturity date T

R : expected recovery rate of the reference entity

Si

pi∑
k=1

δkD(t0, tk)P(t0, tk) = −(1− R)

∫ Ti

t0

D(t0, u)dP(t0, u)

where T → P(t0,T ) is the Ft0 -conditional (risk-neutral) survival distribution
of the reference entity.
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The term-structure construction problem

Example 3 : Default time distribution implied from CDS spreads (cont.)

Using an integration by parts, the survival function u → P(t0, u) satisfies a
linear relation :

Si

pi∑
k=1

δkD(t0, tk)P(t0, tk) + (1− R)D(t0,Ti )P(t0,Ti )

+ (1− R)

∫ Ti

t0

f (t0, u)D(t0, u)P(t0, u)du = 1− R

where f (t0, u) is the instantaneous forward (discount) rate associated with
maturity date u.

As a survival function, T → P(t0,T ) shall be decreasing and such that
P(t0, t0) = 1
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The term-structure construction problem

1) Compatibility with market information :

At time t0, we observe the market quotes S1, . . . , Sn of n liquidly traded
instruments

The values of these products depend on the value of the curve at points
τ1, . . . , τm

The vector of curve values P(t0,X ) := (P(t0, τ1), . . . ,P(t0, τm))> satisfies a
linear system of the form

A · P(t0,X ) = b, (1)

where

A is a n ×m real-valued matrix

b is a n-dimensional column vector

=⇒ Indirect and partial information on the curve at points τ1, . . . , τm

2) No-arbitrage assumption :

In the previous examples, T → P(t0,T ) shall be a non-increasing function
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The term-structure construction problem

Uncertainty embedded in the construction of term-structure functions

The curve T → P(t0,T ) is an infinite-dimensional mathematical object

Partial information on P : in many applications, the number n of
observations is quite small

Uncertainty in the data : due to market illiquidity, quotes may not be fully
reliable

The no-arbitrage condition limits (to some extent) the uncertainty to the
space of monotonic functions
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Range of arbitrage-free OIS discount curves

n = 14 liquidly traded maturities. The associated OIS values depend on
m = 40 points of the curve

Cousin and Niang (2014) : No-arbitrage bounds on OIS discount factors
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Input data : OIS swap rates as of May, 31st 2013.
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Range of arbitrage-free CDS-implied survival functions

n = 4 liquidly traded maturities. CDS fair spreads depend on m = 40
points of the curve
Cousin and Niang (2014) : No-arbitrage bounds on the issuer implied
survival distribution function
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Bounds for CDS implied survival probabilities

Input data : CDS spreads of AIG as of December 17, 2007, R = 40%,
D(t,T ) = exp(−3%(T − t))
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From spline interpolation to kriging

In practice, financial term-structures are constructed using deterministic
interpolation techniques.

Parametric approaches : Nelson-Siegel or Svensson models (used by most
central banks)

Non-parametric interpolation methods : shape-preserving spline techniques
(lack of interpretability but better ability to fit the data).

Could we propose an arbitrage-free interpolation method that additionally
allows for quantification of uncertainty ?
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Classical kriging

A function f is only known at a limited number of points x1, . . . , xn
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Classical kriging

The (unknown) function f is assumed to be a sample path of a Gaussian
process Y
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Classical kriging

Definition : Gaussian process (GP) or Gaussian random field

A Gaussian process is a collection of random variables, any finite number of
which have (consistent) joint Gaussian distributions.

A Gaussian process
(
Y (x), x ∈ Rd

)
is characterized by its mean function

µ : x ∈ Rd −→ E(Y (x)) ∈ R.

and its covariance function

K : (x , x ′) ∈ Rd × Rd −→ Cov(Y (x),Y (x ′)) ∈ R.

Table: Some popular covariance functions K(x , x ′) used in 1D kriging methods.

Name Expression Class

Gaussian σ2 exp
(
− (x−x′)2

2θ2

)
C∞

Matérn 5/2 σ2
(
1 +

√
5|x−x′|
θ

+ 5(x−x′)2

3θ2

)
exp

(
−
√

5|x−x′|
θ

)
C2

Matérn 3/2 σ2
(
1 +

√
3|x−x′|
θ

)
exp

(
−
√

3|x−x′|
θ

)
C1

Exponential σ2 exp
(
− |x−x′|

θ

)
C0
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Classical kriging

The estimation of f relies on the conditional distribution of Y given the
observed values yi = f (xi ) at points xi , i = 1, . . . , n.

Areski Cousin, ISFA, Université Lyon 1 Kriging of financial term-structures 18/40



Classical kriging

X = (x1, . . . , xn)> ∈ Rn×d : some design points

y = (y1, . . . , yn)> ∈ Rn : observed values of f at these points

Y (X ) = (Y (x1), . . . ,Y (xn))> : vector composed of Y at point X

The conditional process is still a Gaussian Process

Let Y be a GP with mean µ and covariance function K . The conditional
process Y | Y (X ) = y is a GP with mean function

η(x) = µ(x) + k(x)>K−1(y − µ), x ∈ Rd

and covariance function K̃ given by

K̃(x , x ′) = K(x , x ′)− k(x)>K−1k(x ′), x , x ′ ∈ Rd

where µ = µ(X ) = (µ(x1), . . . , µ(xn))> , K is the covariance matrix of Y (X )
and k(x) = (K (x , x1) , . . . ,K (x , xn))>
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Extension to linear equality constraints

Recall that, in our term-structure construction problem, the (unknown) real
function f satisfies some linear equality constraints of the form

A · f (X ) = b, (2)

where

A is a given matrix of dimension n ×m

X = (x1, . . . , xm)> ∈ Rm×d

f (X ) = (f (x1), . . . , f (xm))> ∈ Rm

b ∈ Rn
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Extension to linear equality constraints

X = (x1, . . . , xm)> ∈ Rm×d : some design points

b = (b1, . . . , bn)> ∈ Rn : right-hand side of the linear system

Y (X ) = (Y (x1), . . . ,Y (xm)) : vector composed of Y at point X

The conditional process is still a Gaussian Process

Let Y be a GP with mean µ and covariance function K . The conditional
process Y | AY (X ) = b is a GP with mean function

η(x) = µ(x) + (Ak(x))>
(
AKA>

)−1
(b − Aµ), x ∈ Rd

and covariance function K̃ given by

K̃(x , x ′) = K(x , x ′)− (Ak(x))>
(
AKA>

)−1
Ak(x ′), x , x ′ ∈ Rd

where µ = µ(X ) = (µ(x1), . . . , µ(xm))> , K is the covariance matrix of Y (X ),
k(x) = (K (x , x1) , . . . ,K (x , xm))>
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Extension to monotonicity constraints

New formulation of the problem : estimation of an unknown function f given
that {

A · f (X ) = b
f ∈M

whereM is the set of (say) non-increasing functions.

Problem : The conditional process is not a Gaussian process anymore.

Which estimator could we propose for the term-structure ?

How could we recover the distribution of the conditional process ?

How to cope with the infinite-dimensional monotonicity constraints
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Extension to monotonicity constraints
What happens if a monotonic function is estimated using classical kriging (i.e.,
with no constraints) ?
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Extension to monotonicity constraints (1D case)

Proposed methodology : On an interval D = [x , x ] of R, we construct a
finite-dimensional approximation of Y for which the monotonicity constraint is
easy to check.

Regular subdivision u0 < . . . < uN of D with a constant mesh δ

Set of increasing basis functions (φi )i=0,...,N defined on this subdivision

hi (x) := max
(
1− |x−ui |

δ
, 0
)

φi (x) =
∫ x

x
hi (u)du
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Extension to monotonicity constraints (1D case)

Proposition (Maatouk and Bay, 2014b)

Let Y be a zero-mean GP with covariance function K and with almost surely
differentiable paths.

The finite-dimensional process Y N defined on D by

Y N(x) = Y (u0) +
N∑
j=0

Y ′(uj)φj(x)

uniformly converges to Y , almost surely.

Y N is non-decreasing (resp. non-increasing) on D if and only if
Y ′(uj) ≥ 0 (resp. Y ′(uj) ≤ 0) for all j = 0, . . . ,N.

Let ξ := (Y (u0),Y ′(u0), . . . ,Y ′(uN))>, then ξ ∼ N (0, ΓN) where

ΓN =

K(u0, u0) ∂K
∂x′ (u0, uj)

∂K
∂x

(ui , u0) ∂2K
∂x∂x′ (ui , uj)


0≤i,j≤N
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Extension to monotonicity constraints (1D case)

For a given covariance function K , we assume that the unknown function f is a
sample path of the GP

Y N(x) = η +
N∑
j=0

ξjφj(x), x ∈ D,

where ξ := (η, ξ0, . . . , ξN)> ∼ N (0, ΓN).

Kriging f is equivalent to find the conditional distribution of Y N given{
A · Y N(X ) = b linear equality condition
ξj ≤ 0, j = 0, . . . ,N monotonicity constraint
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Extension to monotonicity constraints (1D case)

Or equivalently, to find the distribution of the truncated Gaussian vector
ξ ∼ N (0, ΓN) given{

A · Φ · ξ = b linear equality condition
ξj ≤ 0, j = 0, . . . ,N monotonicity constraint

where Φ is a m × (N + 2) matrix defined as

Φi,j :=

{
1 for i = 1, . . . ,m and j = 1,
φj−2 (xi ) for i = 1, . . . ,m and j = 2, . . . ,N + 2.
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Extension to monotonicity constraints (1D case)

Which estimator could we use for f ?

We consider the mode of the truncated gaussian process (most probable path) :

MN
K (x | A, b) = ν +

N∑
j=0

νjφj(x),

where ν = (ν, ν0, . . . , νN)> ∈ RN+2 is the solution of the following convex
optimization problem :

ν = arg min
c∈C∩I(A,b)

(
1
2
c>
(

ΓN
)−1

c
)
,

with

C =
{
ξ ∈ RN+2 : ξj ≤ 0, j = 0, . . . ,N

}
I(A, b) =

{
ξ ∈ RN+2 : A · Φ · ξ = b

}
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Extension to monotonicity constraints (1D case)

The mode estimator has several advantages (over alternative estimators) :

It satisfies the constraints on the entire domain D

It is easy to compute as the solution of a quadratic optimisation problem

It corresponds to the maximum a posteriori estimator in the sense of
Bayesian statistics

The mode estimator does not depend on the hyper-parameter σ

As N tends to infinity, the limit of MN
K corresponds to a constrained spline

function that depends on K (Bay et al., 2016)
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Extension to monotonicity constraints (1D case)

Efficient simulation of the truncated Gaussian vector

1) Simulate a truncated vector ξ given the linear equality constraint :

Z ∼ {ξ | B · ξ = b} ∼ N
(

(BΓN)>
(
BΓNB>

)−1
b, ΓN −

(
BΓN

)> (
BΓNB>

)−1
BΓN

)
where B = A · Φ.

2) Simulate

{Z | ξj ≤ 0, j = 0, . . . ,N} ∼ {ξ | B · ξ = b and ξj ≤ 0, j = 0, . . . ,N}

by an accelerated rejection sampling algorithm (we use the method proposed in
Maatouk and Bay, 2014a)

3) The corresponding sample curves Y N(·) = η +
∑N

j=0 ξjφj(·) satisfies the
constraints on the entire domain D.

Areski Cousin, ISFA, Université Lyon 1 Kriging of financial term-structures 30/40



Estimation of the covariance hyper-parameters

Classical covariance functions K depend on two parameters θ and σ. How
could we estimate these hyper-parameters ?

θ is estimated by minimizing a LOO cross-validation criterion

θ̂ACV = argmin
θ∈Θ

n∑
i=1

(
bi −

(
A ·MN

K (X | A−i , b−i )
)
i

)2
,

Following Bachoc (2013), given θ̂ACV , σ is estimated as the solution of

1
n

n∑
i=1

(
bi −

(
A ·MN

K (X | A−i , b−i )
)
i

)2
E
((

AY (X )− AMN
K (X | A−i , b−i )

)2
i

∣∣∣ Di

) = 1,

where Di is the set of monotonicity and linear equality constraints without
the i th component
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Kriging of OIS discount curves

We compare two covariance functions : Gaussian and Matérn 5/2

Hyper-parameters θ and σ are estimated using cross-validation

Comparison with Nelson-Siegel and Svensson curve fitting
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Discount curves. N = 50, 100 sample paths. Left : Gaussian covariance
function. Right : Matérn 5/2 covariance function. OIS data of 03/06/2010.
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Kriging of OIS discount curves

Corresponding spot rate curves : − 1
x
logP(x)
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Spot rate curves. Left : Gaussian covariance function. Right : Matérn 5/2
covariance function. OIS data of 03/06/2010. The black solid line is the most
likely spot rate curve − 1

x
logMN

K (x | A, b).
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Kriging of OIS discount curves

Corresponding forward rate curves : − d
dx

logP (x)

Spot rate curves. Left : Gaussian covariance function. Right : Matérn 5/2
covariance function. OIS data of 03/06/2010. The black solid line is the most
likely forward rate curve − d

dx
logMN

K (x | A, b).
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Kriging of OIS discount curves (2D)

The previous approach can be extended in dimension 2.
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Kriging of CDS-implied default distribution

Implied survival function of the Russian sovereign debt

CDS implied survival curves. N = 50, 100 sample paths. Left : Gaussian
covariance function. Right : Matérn 5/2 covariance function. CDS spreads as of
06/01/2005.
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Kriging of CDS-implied default distribution (2D)

The previous approach can be extended in dimension 2.
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Perspectives

Impact of curve uncertainty on the assessment of related products and
their associated hedging strategies

Kriging of other type of financial term-structures such as arbitrage-free
volatility surfaces

What if the underlying market quotes are not reliable due to e.g. market
illiquidity (data observed with a noise) ?
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Thanks for your attention.
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