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Résumé :

Il s’agit d’une version concise de l’article “hedging default risks of CDOs in Markovian
contation models” (2008) auquel nous renvoyons pour plus de dtails. Nous mettons en
évidence une stratégie de duplication de tranches de CDO faisant appel au contrat de swap
de défaut sur l’indice sous-jacent. La perte agrégée suit une châıne de Markov. L’intensité
de la perte agrégée dépend du nombre de défauts dans le portefeuille sous-jacent et il existe
des phénomènes de contagion entre les entités constituant le portefeuille.

Abstract :

This contribution is an abridged version of the research paper “hedging default risks of
CDOs in Markovian contagion models” (2008) to which we refer for further reading. We
exhibit a replicating strategy of CDO tranches based upon dynamic trading of the corre-
sponding credit default swap index. The aggregate loss follows a homogeneous Markov chain
associated with contagion effects and default intensities depend upon the number of defaults.
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Introduction

When dealing with CDO tranches, the market approach to the derivation of credit default
swap deltas consists in bumping the credit curves of the names and computing the ratios of
changes in present value of the CDO tranches and the hedging credit default swaps. This
involves a pricing engine for CDO tranches, usually some mixture of copula and base correla-
tion approaches, leading to some “market delta”. The only rationale of this modus operandi
is local hedging with respect to credit spread risks, provided that the trading books are
marked-to-market with the same pricing engine. Even when dealing with small changes in
credit spreads, there is no guarantee that this would lead to appropriate hedging strategies,
especially to cover large spread widenings and possibly defaults. For instance one can think
of changes in base correlation correlated with changes in credit spreads. A number of CDO
hedging anomalies in the base correlation approach are reported in Morgan and Mortensen
(2007). Moreover, the standard approach is not associated with a replicating theory, thus
inducing the possibility of unexplained drifts and time decay effects in the present value of
hedged portfolios (see Petrelli et al. (2007)).

Unfortunately, the trading desks cannot rely on a sound theory to determine replicat-
ing prices of CDO tranches. This is partly due to the dimensionality issue, partly to the
stacking of credit spread and default risks. Laurent (2006) considers the case of multivari-
ate intensities in a conditionally independent framework and shows that for large portfolios
where default risks are well diversified, one can concentrate on the hedging of credit spread
risks and control the hedging errors. In this approach, the key assumption is the absence of
contagion effects which implies that credit spreads of survival names do not jump at default
times, or equivalently that defaults are not informative. Whether one should rely on this
assumption is to be considered with caution as discussed in Das et al. (2007). Anecdotal
evidence such as the failures of Delphi, Enron, Parmalat and WorldCom shows mixed results.

In this paper, we take an alternative route, concentrating on default risks, credit spreads
and dependence dynamics being driven by the arrival of defaults. We will calculate so-called
“credit deltas”, that are the present value impacts of some default event on a given CDO
tranche, divided by the present value impact of the hedging instrument (here the underlying
index) under the same scenario. Contagion models were introduced to the credit field by
Davis and Lo (2001), Jarrow and Yu (2001) and further studied by Yu (2007). Schönbucher
and Schubert (2001) show that copula models exhibit some contagion effects and relate
jumps of credit spreads at default times to the partial derivatives of the copula. This is
also the framework used by Bielecki et al. (2007b) to address the hedging issue. A similar
but somehow more tractable approach has been considered by Frey and Backhaus (2007b),
since the latter paper considers some Markovian models of contagion. In a copula model,
the contagion effects are computed from the dependence structure of default times, while in
contagion models the intensity dynamics are the inputs from which the dependence structure
of default times is derived. In both approaches, credit spreads shifts occur only at default
times. Thanks to this quite simplistic assumption, and provided that no simultaneous de-
faults occurs, it can be shown that the CDO market is complete, i.e. CDO tranche cash-flows
can be fully replicated by dynamically trading individual credit spread swaps or, in some
cases, by trading the credit default swap index.

Lately, Frey and Backhaus (2007a) have considered the hedging of CDO tranches in a
Markov chain credit risk model allowing for spread and contagion risk. In this framework,
when the hedging instruments are credit default swaps with a given maturity, the market is
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incomplete. In order to derive dynamic hedging strategies, Frey and Backhaus (2007a) use
risk minimization techniques. In a multivariate Poisson model, Elouerkhaoui (2006) also ad-
dresses the hedging problem thanks to the risk minimization approach. As can be seen from
the previous papers, practical implementation can be cumbersome, especially when dealing
with the hedging ratios at different points in time and different states.

For the paper to be self-contained, we recall in Section 1 the mathematics behind the
perfect replicating strategy. The main tool there is a martingale representation theorem for
multivariate point processes. In Section 2, we restrict ourselves to the case of homogeneous
portfolios with Markovian intensities which results in a dramatic dimensionality reduction
for the (risk-neutral) valuation of CDO tranches and the hedging of such tranches as well.
We find out that the aggregate loss is associated with a pure birth process, which is now
well documented in the credit literature. Further details regarding the implementation of
the model and numerical results are detailed in the comprehensive version of the paper.

1 Theoretical Framework

1.1 Default times

Throughout the paper, we will consider n obligors and a random vector of default times
(τ1, . . . , τn) defined on a probability space (Ω,A,P). We denote by N1(t) = 1{τ1≤t}, . . .,
Nn(t) = 1{τn≤t}, the default indicator processes and by Hi,t = σ (Ni(s), s ≤ t), i = 1, . . . , n.

Ht =
n
∨
i=1
Hi,t. (Ht)t∈R+ is the natural filtration associated with the default times.

We denote by τ1, . . . , τn the ordered default times and assume that no simultaneous de-
faults can occur, i.e. τ1 < . . . < τn, P − a.s. This assumption is important with respect
to the completeness of the market. As shown below, it allows to dynamically hedge basket
default swaps and CDOs with n credit default swaps1.

We moreover assume that there exist some (P,Ht) intensities for the default indicator
processes Ni(t), i = 1, . . . , n, i.e. there exist some (non negative) Ht–predictable processes
αP
i , i = 1, . . . , n, such that:

Ni(t)−
∫ t

0
αP
i (s)1{τi>s}ds, i = 1, . . . , n,

are (P,Ht)–martingales. We moreover assume that for each name i = 1, . . . , n, the corre-
sponding default intensity αP

i vanishes after τi, i.e αP
i (t) = 0 on the set {t > τi}.

1.2 Market assumptions

For the sake of simplicity, let us assume for a while that instantaneous digital default swaps
are traded on the names. An instantaneous digital credit default swap on name i traded
at t, provides a payoff equal to dNi(t) − αi(t)dt at t + dt. dNi(t) is the payment on the
default leg and αi(t)dt is the (short term) premium on the default swap. As there are no
more cash-flows after default of name i, αi(t) = 0 on the set {t > τi}. Note that considering
such instantaneous digital default swaps rather than actually traded credit default swaps is

1In the general case where multiple defaults could occur, we have to consider possibly 2n states, and we
would require non standard credit default swaps with default payments conditionally on all sets of multiple
defaults to hedge CDO tranches.
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not a limitation of our purpose. This can rather be seen as a convenient choice of basis from
a theoretical point of view. Of course, we will compute credit deltas with respect to traded
credit default swaps in the applications below2.

Since we deal with the filtration generated by default times, the credit default swap pre-
miums are deterministic between two default events. Therefore, we restrain ourselves to
a market where only default risks occurs and credit spreads themselves are driven by the
occurrence of defaults. In our simple setting, there is no specific credit spread risk. This
corresponds to the framework of Bielecki et al. (2007a).

For simplicity, we further assume that (continuously compounded) default-free interest
rates are constant and equal to r. Given some initial investment V0 and some Ht–predictable
processes δ1(.), . . . , δn(.) associated with some self-financed trading strategy in instantaneous
digital credit default swaps, we attain at time T the payoff:

V0e
rT +

n∑
i=1

∫ T

0
δi (s) er(T−s) (dNi(s)− αi(s)ds).

By definition, δi(s) is the nominal amount of instantaneous digital credit default swap on
name i held at time s. This induces a net cash-flow of δi(s) × (dNi(s)− αi(s)ds) at time
s+ ds, which has to be invested in the default-free savings account up to time T .

1.3 Hedging and martingale representation theorem

From the absence of arbitrage opportunities, α1, . . . , αn are non negative Ht–predictable
processes. From the same reason, {αi(t) > 0} P−a.s.=

{
αP
i (t) > 0

}
. Under mild regularity as-

sumptions, there exists a probability Q equivalent to P such that the instantaneous credit
default swap premiums α1, . . . , αn are the (Q,Ht)–intensities associated with the default
times (see Brémaud (1981), chapter VI). Therefore, from now on, the premiums will be de-
noted αQ

1 , . . . , α
Q
n and we will work under the probability Q.

Let us consider some HT –measurable Q–integrable payoff M . Since M depends upon the
default indicators of the names up to time T , this encompasses the cases of CDO tranches
and basket default swaps, provided that recovery rates are deterministic. Thanks to the
integral representation theorem of point process martingales (see Brémaud (1981), chapter
III), there exists some Ht–predictable processes θ1, . . . , θn such that:

M = EQ [M ] +
n∑
i=1

∫ T

0
θi(s)

(
dNi(s)− αQ

i (s)ds
)
.

As a consequence, we can replicateM with the initial investment EQ [Me−rT
]

and the trading
strategy based on instantaneous digital credit default swaps defined by δi(s) = θi(s)e−r(T−s)

for 0 ≤ s ≤ T and i = 1, . . . , n. Let us remark that the replication price at time t, is provided
by Vt = EQ [Me−r(T−t) |Ht

]
3.

2Note that the instantaneous credit default swaps are not exposed to spread risk but only to default risk.

3Let us notice that M = EQ [M |Ht ] +
n∑

i=1

T∫
t

θi(s)
(
dNi(s)− αQ

i (s)ds
)
. As a consequence, we readily get

M = Vte
r(T−t) +

n∑
i=1

T∫
t

θi(s)
(
dNi(s)− αQ

i (s)ds
)

which provides the time t replication price of M . We can
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While the use of the representation theorem guarantees that, in our framework, any
basket default swap can be perfectly hedged with respect to default risks, it does not provide
a practical way of constructing hedging strategies. As is the case with interest rate or
equity derivatives, exhibiting hedging strategies involves some Markovian assumptions (see
Subsection 2.3).

2 Homogeneous Markovian contagion models

2.1 Intensity specification

In the contagion approach, one starts from a specification of the risk-neutral pre-default in-
tensities αQ

1 , . . . , α
Q
n

4. In the previous section framework, the risk-neutral default intensities
depend upon the complete history of defaults. More simplistically, it is often assumed that
they depend only upon the current credit status, i.e. the default indicators; thus αQ

i (t),
i = 1, . . . , n are deterministic functions of N1(t), . . . , Nn(t). In this paper, we will fur-
ther remain in this Markovian framework, i.e. the pre-default intensities will take the form
αQ
i (t,N1(t), . . . , Nn(t))5. Popular examples are the models of Kusuoka (1999), Jarrow and

Yu (2001), Yu (2007), where the intensities are affine functions of the default indicators. The
connection between contagion models and Markov chains is described in the book of Lando
(2004) and was further discussed in Herbertsson (2007).

Another practical issue is related to name heterogeneity. Modelling all possible interac-
tions amongst names leads to a huge number of contagion parameters and high dimensional
problems, thus to numerical issues. For this practical purpose, we will further restrict to
models where all the names share the same risk-neutral intensity6. This can be viewed as a
reasonable assumption for CDO tranches on large indices, although this is obviously an issue
with equity tranches for which idiosyncratic risk is an important feature. Since pre-default
risk-neutral default intensities, αQ

1 , . . . , α
Q
n are equal, we will further denote these individual

pre-default intensities by αQ.

For further tractability, we will further rely on a strong name homogeneity assumption,
that individual pre-default intensities only depend upon the number of defaults. Let us

denote by N(t) =
n∑
i=1

Ni(t) the number of defaults at time t within the pool of assets. Pre-

default intensities thus take the form αQ (t,N(t))7. This is related to mean-field approaches
(see Frey and Backhaus (2007b)). As for parametric specifications, we can think of some
additive effects, i.e. the pre-default name intensities take the form αQ(t) = α + βN(t) for
some constants α, β as mentioned in Frey and Backhaus (2007b), corresponding to the “lin-

also remark that for a small time interval dt, Vt+dt ≈ Vt(1 + r)dt +
n∑

i=1

δi(t)
(
dNi(t)− αQ

i (t)dt
)

which is

consistent with market practice and regular rebalancing of the replicating portfolio. An investor who wants
to be compensated at time t against the price fluctuations of M during a small period dt has to invest Vt in
the risk-free asset and take positions δ1, . . . , δn in the n instantaneous digital credit default swaps. Let us
recall that there is no initial charge to enter in a credit default swap position.

4After default of name i, the intensity is equal to zero: αQ
i (t) = 0 on the set {t > τi}.

5This Markovian assumption may be questionable, since the contagion effect of a default event may vanish
as time goes by. The Hawkes process, that was used in the credit field by Giesecke and Goldberg (2006),
Errais et al. (2007), provides such an example of a more complex time dependence. Other specifications with
the same aim are discussed in Lopatin and Misirpashaev (2007).

6This means that the pre-default intensities have the same functional dependence to the default indicators.
7Let us remark that on {τi ≥ t}, N(t) =

∑
j 6=i Nj(t), so that the pre-default intensity of name i, actually

only depends on the credit status of the other names.
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ear counterparty risk model”8, or multiplicative effects in the spirit of Davis and Lo (2001),
i.e. the pre-default intensities take the form αQ(t) = α× βN(t). Of course, we could think of
a non-parametric model9.

For simplicity, we will further assume a constant recovery rate equal to R and a constant
exposure among the underlying names. The aggregate fractional loss at time t is given by:
L(t) = (1−R) N(t)

n . As a consequence of the no simultaneous defaults assumption, the
intensity of L(t) or of N(t) is simply the sum of the individual default intensities and is
itself only a function of the number of defaults process. Let us denote by λ (t,N(t)) the
risk-neutral loss intensity. It is related to the individual pre-default risk-intensities by:

λ(t,N(t)) = (n−N(t))× αQ (t,N(t)) .

We are thus typically in a bottom-up approach, where one starts with the specification of
name intensities and thus derives the dynamics of the aggregate loss.

2.2 Risk-neutral pricing

Let us remark that in a Markovian homogeneous contagion model, the process N(t) is a
Markov chain (under the risk-neutral probability Q), and more precisely a pure birth process,
according to Karlin and Taylor (1975) terminology10, since only single defaults can occur11.
The generator of the chain, Λ(t) is quite simple:

Λ(t) =


−λ(t, 0) λ(t, 0) 0 0

0 −λ(t, 1) λ(t, 1) 0
. . . . . .

0 −λ(t, n− 1) λ(t, n− 1)
0 0 0 0 0

 .

Such a simple model of the number of defaults dynamics was considered by Schönbucher
(2006) where it is called the “one-step representation of the loss distribution”. Our paper
can be seen as a bottom-up view of the previous model, where the risk-neutral prices can
actually be viewed as replicating prices. As an example of this approach, let us consider
the replication price of a European payoff with payment date T , such as a “zero-coupon
tranchelet”, paying 1{N(T )=k} at time T for some k ∈ {0, 1, . . . , n}. Let us denote by
V (t,N(t)) = e−r(T−t)Q (N(T ) = k |N(t)) the time t replication price and by V (t, .) the
price vector whose components are V (t, 0), V (t, 1), . . . , V (t, n) for 0 ≤ t ≤ T . We can thus
relate the price vector V (t, .) to the terminal payoff, using the transition matrix Q(t, T )
between dates t and T :

V (t, .) = e−r(T−t)Q(t, T )V (T, .),

where V (T,N(T )) = δk (N(T )). The transition matrix solves for the Kolmogorov backward
and forward equations ∂Q(t,T )

∂t = −Λ(t)Q(t, T ), ∂Q(t,T )
∂T = Q(t, T )Λ(T ). In the time homo-

geneous case, i.e. when the generator is a constant Λ(t) = Λ, the transition matrix can be
8Ding et al. (2006) consider the case where the intensity of the loss process is linear in the number of

defaults. Then, the loss distribution is negative binomial.
9We provide a calibration procedure of such unconstrained intensities onto market inputs in the compre-

hensive version of the paper.
10According to Feller’s terminology, we should speak of a pure death process. Since, we later refer to Karlin

and Taylor (1975), we prefer their terminology.
11Regarding the assumption of no simultaneous defaults, we also refer to Putyatin et al. (2005), Brigo et al.

(2007), Walker (2007). Allowing for multiple defaults could actually ease the calibration onto senior CDO
tranche quotes.
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written in exponential form Q(t, T ) = exp ((T − t)Λ).

These ideas have been put in practice by van der Voort (2006), Herbertsson and Rootz’en
(2006), Arnsdorf and Halperin (2007), De Koch and Kraft (2007), Epple et al. (2007), Her-
bertsson (2007) and Lopatin and Misirpashaev (2007). These papers focus on the pricing of
credit derivatives, while our concern here is the feasibility and implementation of replicating
strategies.

2.3 Computation of credit deltas

We recall that the credit delta with respect to name i is the amount of hedging instruments
(the index here, but possibly a i-th credit default swap) that should be bought to be pro-
tected against a sudden default of name i. A nice feature of homogeneous contagion models
is that the credit deltas are the same for all (the non-defaulted) names, which results in a
dramatic dimensionality reduction.

Let us consider a European type payoff12 and denote its replication price at time t by
V (t, .). In order to compute the credit deltas, let us remark that, by Ito’s lemma,

dV (t,N(t)) =
∂V (t,N(t))

∂t
dt+ (V (t,N(t) + 1)− V (t,N(t))) dN(t).

V (t,N(t) + 1)− V (t,N(t)) is associated with the jump in the price process when a default
occurs in the credit portfolio, i.e. dN(t) = 1. Thanks to the name homogeneity, dN(t) =
n−N(t)∑
i=1

dNi(t)13 and, since (e−r(T−t)V (t,N(t))) is a Q–martingale,

∂V (t,N(t))
∂t

+ λ (t,N(t))× (V (t,N(t) + 1)− V (t,N(t))) = rV (t,N(t)) ,

we end up with:

dV (t,N(t)) = rV (t,N(t)) dt

+
n∑
i=1

(V (t,N(t) + 1)− V (t,N(t)))
(
dNi(t)− αQ(t,N(t))dt

)
.

As a consequence the credit deltas with respect to the individual instantaneous default swaps
are equal to:

δi(t) = e−r(T−t) (V (t,N(t) + 1)− V (t,N(t)))× (1−Ni(t)) ,

for 0 ≤ t ≤ T and i = 1, . . . , n.
Let us denote by VI(t, k) = e−r(T−t)EQ

[
1− N(T )

n |N(t) = k
]

the time t price of the equally
weighted portfolio involving defaultable discount bonds and set

δI (t,N(t)) =
V (t,N(t) + 1)− V (t,N(t))
VI (t,N(t) + 1)− VI (t,N(t))

.

12For notational simplicity, we assume that there are no intermediate payments. This corresponds for
instance to the case of zero-coupon CDO tranches with up-front premiums. The more general case is considered
in the comprehensive version of the paper.

13The last N(t) names have defaulted.
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It can readily be seen that:

dV (t,N(t)) = r × (V (t,N(t))− δI (t,N(t))VI (t,N(t))) dt+ δI (t,N(t)) dVI (t,N(t)) .

As a consequence, we can perfectly hedge a European type payoff, say a zero-coupon CDO
tranche, using only the index portfolio and the risk-free asset. The hedge ratio, with respect
to the index portfolio is actually equal to

δI (t,N(t)) =
V (t,N(t) + 1)− V (t,N(t))
VI (t,N(t) + 1)− VI (t,N(t))

.

The previous hedging strategy is feasible provided that VI (t,N(t) + 1) 6= VI (t,N(t)). The
usual case corresponds to some positive dependence, thus αQ (t, 0) ≤ αQ (t, 1) ≤ · · · ≤
αQ (t, n− 1). Therefore VI (t,N(t) + 1) < VI (t,N(t))14. The decrease in the index portfo-
lio value is the consequence of a direct default effect (one name defaults) and an indirect
effect related to a positive shift in the credit spreads associated with the non-defaulted names.

The idea of building a hedging strategy based on the change in value at default times
was introduced in Arvanitis and Laurent (1999). The rigorous construction of a dynamic
hedging strategy in a univariate case can be found in Blanchet-Scalliet and Jeanblanc (2004).
Our result can be seen as a natural extension to the multivariate case, provided that we deal
with Markovian homogeneous models: we simply need to deal with the number of defaults
N(t) and the index portfolio VI (t,N(t)) instead of a single default indicator Ni(t) and the
corresponding defaultable discount bond price.

Conclusion

The lack of internally consistent methods to hedge CDO tranches has paved the way to a
variety of local hedging approaches that do not guarantee the full replication of tranche pay-
offs. This may not look as such a practical issue when trade margins are high and holding
periods short. However, we think that there might be a growing concern from investment
banks about the long term credit risk management of trading books as the market matures.

A homogeneous Markovian contagion model provides a strikingly easy way to compute
dynamic replicating strategies of CDO tranches. While such models have recently been con-
sidered for the pricing of exotic basket credit derivatives, our main concern here is to provide
a rigorous framework to the hedging issue.

We do not aim at providing a definitive answer to the thorny issue of hedging CDO
tranches. For this purpose, we would also need to tackle name heterogeneity, possible non
Markovian effects in the dynamics of credit spreads, non deterministic intensities between
two default dates, the occurrence of multiple defaults, stochastic recovery rates. . . A fully
comprehensive approach to the hedging of CDO tranches is likely to be quite cumbersome
both on economic and numerical grounds.

However, from a practical perspective, we think that our approach might be useful to
assess the default exposure of CDO tranches by quantifying the credit contagion effects in a
reasonable way.

14In the case where αQ(t, 0) = αQ(t, 1) = . . . = αQ(t, n), there are no contagion effects and default dates are
independent. We still have VI(t,N(t) + 1) < VI(t,N(t)) since VI(t,N(t)) is linear in the number of surviving
names.
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