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Introduction

Main issue: hedging of portfolio credit derivatives
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Cash-flows driven by the realized path of the aggregate loss process

Lt =
1

n

n∑
i=1

(1−Ri)Hi
t

where Ri is the recovery rate and Hi
t is the default indicator of obligor i
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Introduction

Hedging using the one-factor Gaussian copula model?

Advantages:

Bottom-up model: account for dispersion of default risk among names in
the portfolio

Copula construction of default times: Calibration of CDS spreads and
CDO tranche quotes can be made using two separate numerical
procedures

Factor model: fast algorithms to compute aggregate loss distribution

Drawbacks:

Static model

Base correlation approach unable to describe consistently the
dependence structure of default times
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Dynamic model of portfolio credit risk

Simultaneous default model

Defaults are the consequence of triggering-events affecting simultaneously
pre-specified groups of obligors

Example: n = 5 and Y = {{1}, {2}, {3}, {4}, {5}, {4, 5}, {2, 3, 4}, {1, 2}}.
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Dynamic model of portfolio credit risk

{1, . . . , n} set of credit references

Y = {{1}, . . . , {n}, I1, . . . , Im} pre-specified groups of obligors

λY = λY (t) deterministic intensity function of the triggering-event
associated with group Y ∈ Y

Ht = (H1
t , . . . , H

n
t ) defined as multivariate continuous-time Markov chain

in {0, 1}n such that for k,m ∈ {0, 1}n:

P (Ht+dt = m | Ht = k) =
∑
Y ∈Y

λY (t)1{kY =m}dt

where kY is obtained from k = (k1, . . . , kn) by replacing the components
kj , j ∈ Y , by number one. ex: (0, 1, 0, 0){1,2,4} = (1, 1, 0, 1)

Ft = σ(Hu , u ≤ t) natural filtration of H
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Dynamic model of portfolio credit risk

Example: n = 2, Y = {{1}, {2}, {1, 2}}. Ht = (H1
t , H

2
t ) is a multivariate

continuous-time Markov chain with space set {(0, 0), (1, 0), (0, 1), (1, 1)} and
generator matrix




− λ{1} λ{2} λ{1,2}
0 − 0 λ{2} + λ{1,2}
0 0 − λ{1} + λ{1,2}
0 0 0 0




(0, 0)

(0, 0)

(1,0)

(1,0)

(0,1)

(0,1)

(1,1)

(1,1)

Obligor 1 defaults with intensity λ{1} + λ{1,2} regardless of the state of
the pool

Obligor 2 defaults with intensity λ{2} + λ{1,2} regardless of the state of
the pool

No contagion effect : Past defaults do not have any effect on intensities
of surviving names
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Dynamic model of portfolio credit risk

General case: Obligor i defaults with intensity ηi(t) =
∑
Y ∈Y

λY (t)1{i∈Y }

P(Hi
t+dt −Hi

t = 1 | Ft) = P(Hi
t+dt −Hi

t = 1 | Hi
t) = (1−Hi

t)ηi(t)dt

Each default indicator Hi, i = 1, . . . , n is a Markov process with respect
to F
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Pricing and Hedging

Separate calibration procedure of CDS-s and CDO tranches

For any i = 1, . . . , n, the price at time t of a CDS referencing name i
(European-type payoff):

E
[
Φ(Hi

T ) | Ft
]

= E
[
Φ(Hi

T ) | H1
t , . . . , H

n
t

]
= E

[
Φ(Hi

T ) | Hi
t

]

Hedging CDO tranches with single-name CDS

Derive price dynamics of CDO tranche and single-name CDS-s

Computation of min-variance hedging strategies in this incomplete market
model

But: price of portfolio loss derivatives solves a large system of Kolmogorov
backward equations that is numerically intractable at least for large
portfolios (n > 20)
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Common-Shock Model Interpretation

For any pre-specified group Y ∈ Y = {{1}, . . . , {n}, I1, . . . , Im}, we
define

τY = inf

{
t ≥ 0 |

∫ t

0

λY (s)ds > EY

}
where EY , Y ∈ Y are independent and exponentially distributed random
variables with parameter 1.

τY is the arrival time of shock Y that yields default of non-defaulted
names in group Y

Default time of name i = 1, . . . , n defined by:

τ̂i = min
{Y ∈Y; i∈Y }

τY

Common-Shock Model Interpretation

For all t1, . . . , tn ≥ 0, the following relation holds

P (τ̂1 > t1, . . . , τ̂n > tn) = P (τ1 > t1, . . . , τn > tn)

where τi := inf
{
t ≥ 0 | Hi

t = 1
}

is the default time of name i in the
Markovian model
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Common-Shock Model Interpretation

Using fast recursion procedure for pricing and hedging CDO tranches

Thanks to the common-shock model interpretation:

Lt =
1

n

n∑
i=1

(1−Ri)1{τi≤t}
d
=

1

n

n∑
i=1

(1−Ri)1{τ̂i≤t}

where 1{τ̂1≤t}, . . . ,1{τ̂n≤t} are conditionally independent Bernoulli’s
given common-shock indicators 1{τI1≤t}, . . . ,1{τIm≤t}

For any state of the Markov process Ht, there exists an “equivalent”
common-shock model that matches joint distribution of default times for
non-defaulted names.

Computation of min-variance hedging strategies is also tractable
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Common-Shock Model Interpretation

Two-step calibration procedure

First step:

CDS spread of name i at time t = 0 can be expressed as a function of

survival probabilities P(τi > t) = exp
(
−
∫ t
0
ηi(u)du

)
where

ηi(u) = λ{i}(u) +

m∑
k=1

λIk (u)1{i∈Ik}

Marginal default intensities ηi, i = 1, . . . , n, can be calibrated on
single-name CDS curves using a standard bootstrap procedure

Second step:

Common-shock intensities λIk , k = 1, . . . ,m are calibrated on CDO
tranche quotes using the recursion algorithm
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Calibration on CDX index

Data set: 5-year CDX North-America IG index on 20 December 2007

Quoted spreads at different pillars of the n = 125 index constituents

Quoted spreads of standard tranches [0,3], [3,7], [7,10], [10,15], [15,30]

Model specification:

Names are labelled with respect to decreasing level of spreads

12345

I1
I2

CDS Spreads
n-1 n 6

I5

m = 5 groups I1 ⊂ · · · ⊂ I5 such that I1 = {1, . . . , 6}, I2 = {1, . . . , 19},
I3 = {1, . . . , 25}, I4 = {1, . . . , 61}, I5 = {1, . . . , 125}
Piecewise-constant intensities λ{1}, . . . , λ{125}, λI1 , . . . , λI5 with grid
points corresponding to CDS pillars

Homogeneous and constant recovery rates: 40%

Constant short-term interest rate: 3%
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Calibration on CDX index
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Calibration on CDX index

Calibration results:

Tranche [0,3] [3,7] [7,10] [10,15] [15,30]

Model spread in bps 48.0701 254.0000 124.0000 61.0000 38.9390
Market spread in bps 48.0700 254.0000 124.0000 61.0000 41.0000

Abs. Err. in bps 0.0001 0.0000 0.0000 0.0000 2.0610
% Rel. Err. 0.0001 0.0000 0.0000 0.0000 5.0269

Names in the set I5 \ I4 are excluded from the calibration constraints
(they can only default within the Armageddon shock I5)
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Calibration on CDX index

Implied 5-year loss distribution:
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Figure 1: Portfolio loss distribution and log-distribution calibrated to all 5y CDX tranche
quotes and to the k = 61 riskiest CDS curves on 17 December 2007.

4 Hedging

A distinguishing feature of the present set-up is that hedging loss derivatives by single-
name instruments can be both theoretically sound (thanks to the bottom-up Markovian
background) and tractable (thanks to the Marshall-Olkin copula interpretation), as we now
illustrate.

4.1 Price Dynamics

In the present nil-rates environment, the (ex-dividend) price process of an asset simply refers
to the risk-neutral conditional expectation of future asset cash flows, whereas the cumulative
value (or gain) process boils down to the sum of the price process and of the cumulative
cash-flows process. It is readily checked that the gain process is a martingale,1 as opposed
to the price process.

The notation Zt is that of our Itô formula (5).

Proposition 4.1 (i) The price P i and the cumulative value P̂ i of the credit derivative on
name i are such that, for t ∈ [0, T ],

P i
t = (1 − H i

t)vi(t,X
i
t)

dP̂ i
t = (1 − H i

t)∂xivi(t,X
i
t)σi(t,X

i
t )dW i

t +
∑

Z∈Zt

1i∈Z

(
φi − vi(t,X

i
t)

)
dMZ

t , (38)

for a pre-default pricing function vi(t, xi) such that

(1 − H i
t)vi(t,X

i
t ) + H i

tφi = E[ϕi

∑

t<Tj≤T

(1 − H i
Tj

) + φiH
i
T |Ft] ;

(ii) The price process Π and the cumulative value Π̂ of the portfolio loss derivative are such
that, for t ∈ [0, T ],

Πt = u(t,Xt,Ht) − φ(Nt)

dΠ̂t = ∇u(t,Xt,Ht)σ(t,Xt)dWt +
∑

Z∈Zt

δuZ(t,Xt,Ht−)dMZ
t , (39)

1As a Doob martingale, namely, the conditional expectation process of a fixed random variable.
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Min-variance hedging strategies
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Min-variance hedging strategies
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Min-variance hedging strategies
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Min-variance hedging strategies
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Conclusion

Thank you for your attention!
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