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Introduction

Main issue: hedging of portfolio credit derivatives
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Cash-flows driven by the realized path of the aggregate loss process

Lt =
1

n

n∑
i=1

(1−Ri)Hi
t

where Ri is the recovery rate and Hi
t is the default indicator of obligor i
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Introduction

Hedging using the one-factor Gaussian copula model?

Advantages:

Bottom-up model: account for dispersion of default risk among names in
the portfolio

Copula construction of default times: Calibration of marginal default
distributions and dependence parameters can be made using two separate
numerical procedures

Factor model: fast algorithms to compute marginal distributions of the
loss process and hedging sensitivities

Drawbacks:

Static model

Base correlation approach unable to describe consistently the dependence
structure of default times
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Introduction

In this paper, we construct a bottom-up Markovian model consisting of

X = (X1, . . . , Xn) a vector of factor processes

H = (H1, . . . , Hn) a vector of default indicator processes (Hi
t = 1 iif

default of name i occurs before time t)

Ft = FX,H
t

and with the following key features

P1: (X,H) is a Markov process with respect to F
P2: Each pair (Xi, Hi) is a Markov process with respect to F
P3: Obligors are likely to default simultaneously

P4: Computation of both marginal loss distributions and dynamic hedging
strategies can be achieved by fast numerical procedure
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Markovian model of portfolio credit risk

Simultaneous default model

Defaults are the consequence of triggering-events affecting simultaneously
pre-specified groups of obligors

Example: n = 5 and Y = {{1}, {2}, {3}, {4}, {5}, {4, 5}, {2, 3, 4}, {1, 2}}.
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Markovian model of portfolio credit risk

{1, . . . , n} set of credit references

Y = {{1}, . . . , {n}, I1, . . . , Im} pre-specified groups of obligors

λY = λY (t) deterministic intensity function of the triggering-event
associated with group Y ∈ Y

Ht = (H1
t , . . . , H

n
t ) defined as multivariate continuous-time Markov chain

in {0, 1}n such that for k,m ∈ {0, 1}n:

P (Ht+dt = m | Ht = k) =
∑
Y ∈Y

λY (t)1{kY =m}dt

where kY is obtained from k = (k1, . . . , kn) by replacing the components
kj , j ∈ Y , by number one. ex: (0, 1, 0, 0){1,2,4} = (1, 1, 0, 1)

Ft = σ(Hu , u ≤ t) natural filtration of H
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Markovian model of portfolio credit risk

Example: n = 2, Y = {{1}, {2}, {1, 2}}. Ht = (H1
t , H

2
t ) is a multivariate

continuous-time Markov chain with space set {(0, 0), (1, 0), (0, 1), (1, 1)} and
generator matrix




− λ{1} λ{2} λ{1,2}
0 − 0 λ{2} + λ{1,2}
0 0 − λ{1} + λ{1,2}
0 0 0 0




(0, 0)

(0, 0)

(1,0)

(1,0)

(0,1)

(0,1)

(1,1)

(1,1)

Obligor 1 defaults with intensity λ{1} + λ{1,2} regardless of the state of
the pool

Obligor 2 defaults with intensity λ{2} + λ{1,2} regardless of the state of
the pool
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Markovian model of portfolio credit risk

General case: Obligor i defaults with intensity ηi(t) =
∑
Y ∈Y

λY (t)1{i∈Y }

P(Hi
t+dt −Hi

t = 1 | Ft) = P(Hi
t+dt −Hi

t = 1 | Hi
t) = (1−Hi

t)ηi(t)dt

Each default indicator Hi, i = 1, . . . , n is a Markov process with respect
to F (Property P2 is then satisfied)

No contagion effect : Past defaults do not have any effect on intensities
of surviving names
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Markovian model of portfolio credit risk

The latter construction can be extended to the case of stochastic intensity
functions:

λY = λY (t,Xt) , Y ∈ Y
where Xt = (X1

t , . . . , X
n
t ) is a multivariate diffusion process:

dXi
t = bi(t,X

i
t) dt+ σi(t,X

i
t) dW

i
t , i = 1, . . . , n

W = (W 1
t , . . . ,W

n
t ): n-dimensional Brownian motion with correlation

matrix %(t) = (ρi,j(t))1≤i,j≤n

bi, σi are suitable drift and variance function-coefficients
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Markovian model of portfolio credit risk

Markov property of the model

Let F = FX,H be the natural filtration of (X,H). The process (X,H) is an
F-Markov process with generator A given by

Atu(t,x,k) =
∑

1≤i≤n

(
bi(t, xi)∂xiu(t,x,k) +

1

2
σ2
i (t, xi)∂

2
x2i
u(t,x,k)

)
+

∑
1≤i<j≤n

%i,j(t)σi(t, xi)σj(t, xj)∂
2
xi,xju(t,x,k)

+
∑
Y ∈Y

λY (t,x)
(
u(t,x,kY )− u(t,x,k)

)

Areski Cousin Pricing and Hedging Loss Derivatives in a Markovian Bottom-Up Model



Markovian model of portfolio credit risk

The intensity of a jump of Hi from Hi
t− = 0 to 1 is given by:

ηi(t,Xt) = λ{i}(t,Xt) +
m∑
k=1

λIk (t,Xt)1{i∈Ik}

Markov copula property

Under the following conditions

λ{i}(t,x) only depends on x = (x1, . . . , xn) through xi, i = 1, . . . , n

λIk (t,x) does not depend on x, k = 1, . . . ,m

for every i = 1, . . . , n, the process (Xi, Hi) is an F-Markov process admitting
the following generator

Aitui(t, xi, ki) = bi(t, xi)∂xiui(t, xi, ki) +
1

2
σ2
i (t, xi)∂

2
x2i
ui(t, xi, ki)

+ ηi(t, xi)
(
ui(t, xi, 1)− ui(t, xi, ki)

)
Practical implication: two-steps calibration procedure of single-name and

multi-name products
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Hedging CDO tranches using single-name CDS-s

Set of fundamental martingales (jump components)

HZ
t is the indicator process of simultaneous default of names in the set Z,

for every subset Z of {1, . . . , n}
Yt = Y ∩ suppc(Ht−) stands for the set of survivors of set Y right before
t, for every pre-specified group Y ∈ Y

Set of fundamental martingales

The process MZ defined by

dMZ
t := dHZ

t − `Z(t,Xt,Ht−)dt

is a martingale with respect to F , where the intensity function `Z(t,x,k) is
such that

`Z(t,Xt,Ht−) =
∑

Y ∈Y;Yt=Z

λY (t,Xt)
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Hedging CDO tranches using single-name CDS-s

Itô formula

Given a “regular enough” function u = u(t,x,k), one has, for t ∈ [0, T ],

du(t,Xt,Ht) =
(
∂t +At

)
u(t,Xt,Ht)dt + ∇u(t,Xt,Ht)σ(t,Xt)dWt

+
∑
Z∈Zt

δuZ(t,Xt,Ht−)dMZ
t

where

σ(t,x): diagonal matrix with diagonal (σi(t, xi))1≤i≤n

∇u(t,x,k) = (∂x1u(t,x,k), . . . , ∂xnu(t,x,k))

δuZ(t,x,k) = u(t,x,kZ)− u(t,x,k)

Zt = {Yt; Y ∈ Y} \ ∅: set of all non-empty sets of survivors of sets Y in
Y right before time t

Martingale dimension: n+ 2n
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Hedging CDO tranches using single-name CDS-s

Price dynamics for single-name CDS-s (buy-protection position)

T : contract maturity

Si: T -year contractual CDS-spread of obligor i

t1 < · · · < tp = T : premium payment dates, h = tj − tj−1 length between
two premium payment dates (typically a quarter)

Ri: recovery rate of obligor i

In the rest of the presentation, we will assume zero interest rates except

for numerical results
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Hedging CDO tranches using single-name CDS-s

Price dynamics for single-name CDS i

The price P i and the cumulative value P̂ i at time t ∈ [0, T ] of a single-name
CDS on obligor i are given by

P it = 1{τi>t}vi(t,X
i
t)

dP̂ it = 1{τi>t}∂xivi(t,X
i
t)σi(t,X

i
t)dW

i
t

+
∑
Z∈Zt

1{i∈Z}

(
1−Ri − vi(t,Xi

t)
)
dMZ

t

for a pre-default pricing function vi(t, xi) such that

1{τi>t}vi(t,X
i
t) = E[(1−Ri)1{t<τi≤T} − Sih

∑
t<tj≤T

1{τi>tj}|Ft]
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Hedging CDO tranches using single-name CDS-s

Price dynamics for CDO tranche [a, b] (buy-protection position)

T : contract maturity

a: attachement point, b: detachement point, 0 ≤ a < b ≤ 1

Sa,b: T -year contractual spread of CDO tranche [a, b]

t1 < · · · < tp = T : premium payment dates, h = tj − tj−1 length between
two premium payment dates (typically a quarter)

CDO tranche cash-flows are driven by the tranche loss process

La,bt = La,b(Ht) = (Lt − a)+ − (Lt − b)+

where

Lt = Lt(Ht) =
1

n

n∑
i=1

(1−Ri)1{τi≤t}

is the credit loss process for the underlying portfolio
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Hedging CDO tranches using single-name CDS-s

Price dynamics for CDO tranche [a, b]

The price Π and the cumulative value Π̂ at time t ∈ [0, T ] of a CDO-tranche
[a, b] are given by

Πt = u(t,Xt,Ht)

dΠ̂t = ∇u(t,Xt,Ht)σ(t,Xt)dWt

+
∑
Z∈Zt

(
La,b(H

Z
t−)− La,b(Ht−) + δuZ(t,Xt,Ht−)

)
dMZ

t

for a pricing function u(t,x,k) such that

u(t,Xt,Ht) = E
[
La,bT − L

a,b
t − Sa,b h

∑
t<tj≤T

(
b− a− La,btj

) ∣∣∣Ft]

The pricing function u(t,x,k) solves a very large system of Kolmogorov

pde
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Hedging CDO tranches using single-name CDS-s

Hedging portfolio: first d single-name CDS-s and the savings account

The vector of cumulative values P̂ = (P̂ 1, . . . , P̂ d)T associated with the first d
CDS-s has the following dynamics:

dP̂t = ∇v(t,Xt,Ht)σ(t,Xt)dWt +
∑
Z∈Zt

∆vZ(t,Xt,Ht−)dMZ
t

where

∇v is a d× n-matrix such that ∇v(t,x,k)ji = 1{kj=0}∂xjvi(t, xi), for
every 1 ≤ i ≤ d and 1 ≤ j ≤ n

∆vZ(t,x,k) is a d-dimensional column vector equal to

(1{1∈Z, k1=0} ((1−R1)− v1(t, x1)) , . . . ,1{d∈Z, kd=0} ((1−Rd)− vd(t, xd)))T
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Hedging CDO tranches using single-name CDS-s

Tracking error: Process (et) such that e0 = 0 and for t ∈ [0, T ]:

det = dΠ̂t − ζtdP̂t

=
(
∇u(t,Xt,Ht)− ζt∇v(t,Xt,Ht)

)
σ(t,Xt)dWt

+
∑
Z∈Zt

(
∆uZ(t,Xt,Ht−)− ζt∆vZ(t,Xt,Ht−)

)
dMZ

t

where

ζt = (ζ1t , . . . , ζ
d
t ) gives the positions held at time t in CDS 1, . . . , d

∇u(t,x,k) = (∂x1u(t,x,k), . . . , ∂xnu(t,x,k))

∆uZ(t,x,k) = δZu(t,x,k) + La,b(k
Z)− La,b(k)
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Hedging CDO tranches using single-name CDS-s

Min-variance hedging strategies

The min-variance hedging strategy ζ for the CDO-tranche [a, b] is

ζt =
d〈Π̂, P̂〉t

dt

(
d〈P̂〉t
dt

)−1

= ζ(t,Xt,Ht−)

where ζ = (u,v)(v,v)−1, with

(u,v) = (∇u)σ2(∇v)T +
∑
Y ∈Y

λY ∆uY (∆vY )T

(v,v) = (∇v)σ2(∇v)T +
∑
Y ∈Y

λY ∆vY (∆vY )T
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Common-Shock Model Interpretation

Example: n = 5 and Y = {{1}, {2}, {3}, {4}, {5}, {4, 5}, {2, 3, 4}, {1, 2}}.
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t

Ĥ
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t

Ĥ
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t

Ĥ1
t := max

�
Ĥ

{1}
t , Ĥ

{1,2}
t

�

Ĥ2
t := max

�
Ĥ

{2}
t , Ĥ

{1,2}
t , Ĥ

{2,3,4}
t

�

Ĥ3
t := max

�
Ĥ

{3}
t , Ĥ

{2,3,4}
t

�

Ĥ4
t := max

�
Ĥ

{4}
t , Ĥ

{2,3,4}
t , Ĥ

{4,5}
t

�

Ĥ5
t := max

�
Ĥ

{5}
t , Ĥ

{4,5}
t

�

General case: In the common-shock model, individual default indicators are
such that

Ĥi
t := max

{
ĤY
t , Y ∈ Y, i ∈ Y

}
where ĤY

t , Y ∈ Y are independent {0, 1}–point processes with intensity λY
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Common-Shock Model Interpretation

In the rest of the presentation, we consider no spread risk Ft = FH
t

Main result

τ̂i := inf
{
t ≥ 0 | Ĥi

t = 1
}

, i = 1, . . . , n: default times in the

common-shock model

τi := inf
{
t ≥ 0 | Hi

t = 1
}

, i = 1, . . . , n: default times in the Markovian
model

Proposition

For all t1, . . . , tn ≥ 0, the following relation holds

P (τ̂1 > t1, . . . , τ̂n > tn) = P (τ1 > t1, . . . , τn > tn)
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Common-Shock Model Interpretation

Main result (Ft–conditional version)

supp(Ht): set of all defaulted names at time t

Yt = {Y ∈ Y ;Y * supp(Ht)} : set of pre-specified groups that contain
at least one alive obligor

Ĥi
t := max

{
ĤY
t , Y ∈ Yt, i ∈ Y

}
: individual default processes in the

Ft–related common-shock model

τ̂i(t) := inf
{
θ ≥ t | Ĥi

θ = 1
}

, i ∈ suppc(Ht): default times of surviving

names in the Ft–related common-shock model

τi := inf
{
θ ≥ t | Hi

θ = 1
}

, i ∈ suppc(Ht): default times of surviving
names in the Ft–conditional Markovian model

Proposition

Let Z be a subset of {1, . . . , n}. For every t1, . . . , tn ≥ t, one has on the set
{Z = suppc(Ht)}

P (τ̂i(t) > ti, i ∈ Z) = P (τi > ti, i ∈ suppc(Ht) | Ft)
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Common-Shock Model Interpretation

Calibration of marginal default intensities on single-name CDS-s

Individual shocks + Common shocks: Y = {{1}, . . . , {n}, I1, . . . , Im}
Price at time t = 0 of CDS i can be expressed as a function of E

[
Hi
t

]
,

t = 0, . . . , T

E
[
Hi
t

]
= P(τi > t) = 1− exp

(
−
∫ t

0

ηi(u)du

)
where

ηi(u) = λ{i}(u) +
m∑
k=1

λIk (u)1{i∈Ik}

Marginal default intensities ηi, i = 1, . . . , n, can be calibrated on
single-name CDS curves using a bootstrap procedure
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Common-Shock Model Interpretation

Calibration of common-shocks intensities on CDO tranches

Pricing of CDO tranches only involves marginal loss distributions

Thanks to the common-shock model interpretation:

Lt =
1

n

n∑
i=1

(1−Ri)Hi
t
d
=

1

n

n∑
i=1

(1−Ri)Ĥi
t

Conditionally on
(
ĤI1
t , . . . , Ĥ

Im
t

)
, Ĥ1

t , . . . , Ĥ
n
t are independent

Bernoulli’s with random parameters

pit =

{
1 i ∈ ∪mk=1{Ik ; Ĥ

Ik
t = 1}

1− exp
(
−
∫ t
0
λ{i}(u)du

)
else

where

λ{i}(u) = ηi(u)−
m∑
k=1

λIk (u)1{i∈Ik} ≥ 0
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Common-Shock Model Interpretation

Fast convolution-recursion procedure for computing loss distribution

Let N
(k)
t =

k∑
i=1

Ĥi
t , k = 1, . . . , n

Let q
(k)
t (i) = P

(
N

(k)
t = i | ĤI1

t , . . . , Ĥ
Im
t

)
, i = 0, . . . , k

The following recursion procedure can be used to compute the conditional
loss distribution starting from k = 0 and q

(0)
t (0) = 1

q
(k+1)
t (0) = (1− pk+1

t ) · q(k)t (0)

q
(k+1)
t (i) = pk+1

t · q(k)t (i− 1) + (1− pk+1
t ) · q(k)t (i), i = 1, . . . , k

q
(k+1)
t (k + 1) = pk+1

t · q(k)t (k)

This gives the time-t conditional distribution q
(n)
t of the total number of

defaults Nt := N
(n)
t =

n∑
i=1

Ĥi
t
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Common-Shock Model Interpretation

Fast convolution-recursion procedure for computing loss distribution

The computation of the unconditional loss distribution involves a
summation over 2m terms, i.e., as many terms as possible states of the
vector (ĤI1

t , . . . , Ĥ
Im
t )

In the case where the groups are nested, i.e., I1 ⊂ · · · ⊂ Im, the collection
of events (Akt )k=0,...,m defined by

A0
t =

{
ĤI1
t = 0, . . . , ĤIm

t = 0
}

Akt =
{
Ĥ
Ik
t = 1, Ĥ

Ik+1
t = 0, . . . , ĤIm

t = 0
}
, k = 1, . . . ,m− 1

Amt =
{
ĤIm
t = 1

}
forms a partition of Ω.

Areski Cousin Pricing and Hedging Loss Derivatives in a Markovian Bottom-Up Model



Common-Shock Model Interpretation

Fast convolution-recursion procedure for computing loss distribution

Since Akt , k = 0, . . . ,m are disjoint events:

P(Nt = i) =

m∑
k=1

P(Nt = i | Akt )P(Akt ), i = 0, . . . , n

P(Nt = i | Akt ) can be computed thanks to the previous recursion

procedure using the fact that Ĥ1
t , . . . , Ĥ

n
t are conditionally independent

Bernoulli’s given Akt , for every k = 0, . . . ,m

As ĤI1
t , . . . , Ĥ

Im
t are independent rv, the probability of the event Akt

satisfies

P(Akt ) =

(
1− exp

(
−
∫ t

0

λIk (u)du

)) m∏
j=k+1

exp

(
−
∫ t

0

λIj (u)du

)
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Calibration on CDX index

Data set: 5-year CDX North-America IG index on 20 December 2007

Quoted spreads at different pillars of the n = 125 index constituents

Quoted spreads of standard tranches [0,3], [3,7], [7,10], [10,15], [15,30]

Model specification:

Names are labelled with respect to decreasing level of spreads

12345

I1
I2

CDS Spreads
n-1 n 6

I5

m = 5 groups I1 ⊂ · · · ⊂ I5 such that I1 = {1, . . . , 6}, I2 = {1, . . . , 19},
I3 = {1, . . . , 25}, I4 = {1, . . . , 61}, I5 = {1, . . . , 125}
Piecewise-constant intensities λ{1}, . . . , λ{125}, λI1 , . . . , λI5 with grid
points corresponding to CDS pillars

Homogeneous and constant recovery rates: 40%

Constant short-term interest rate: 3%
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Calibration on CDX index
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Calibration on CDX index

Calibration results:

Tranche [0,3] [3,7] [7,10] [10,15] [15,30]

Model spread in bps 48.0701 254.0000 124.0000 61.0000 38.9390
Market spread in bps 48.0700 254.0000 124.0000 61.0000 41.0000

Abs. Err. in bps 0.0001 0.0000 0.0000 0.0000 2.0610
% Rel. Err. 0.0001 0.0000 0.0000 0.0000 5.0269

Names in the set I5 \ I4 are excluded from the calibration constraints
(they can only default within the Armageddon shock I5)
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Calibration on CDX index

Implied 5-year loss distribution:
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Figure 1: Portfolio loss distribution and log-distribution calibrated to all 5y CDX tranche
quotes and to the k = 61 riskiest CDS curves on 17 December 2007.

4 Hedging

A distinguishing feature of the present set-up is that hedging loss derivatives by single-
name instruments can be both theoretically sound (thanks to the bottom-up Markovian
background) and tractable (thanks to the Marshall-Olkin copula interpretation), as we now
illustrate.

4.1 Price Dynamics

In the present nil-rates environment, the (ex-dividend) price process of an asset simply refers
to the risk-neutral conditional expectation of future asset cash flows, whereas the cumulative
value (or gain) process boils down to the sum of the price process and of the cumulative
cash-flows process. It is readily checked that the gain process is a martingale,1 as opposed
to the price process.

The notation Zt is that of our Itô formula (5).

Proposition 4.1 (i) The price P i and the cumulative value P̂ i of the credit derivative on
name i are such that, for t ∈ [0, T ],

P i
t = (1 − H i

t)vi(t,X
i
t)

dP̂ i
t = (1 − H i

t)∂xivi(t,X
i
t)σi(t,X

i
t )dW i

t +
∑

Z∈Zt

1i∈Z

(
φi − vi(t,X

i
t)

)
dMZ

t , (38)

for a pre-default pricing function vi(t, xi) such that

(1 − H i
t)vi(t,X

i
t ) + H i

tφi = E[ϕi

∑

t<Tj≤T

(1 − H i
Tj

) + φiH
i
T |Ft] ;

(ii) The price process Π and the cumulative value Π̂ of the portfolio loss derivative are such
that, for t ∈ [0, T ],

Πt = u(t,Xt,Ht) − φ(Nt)

dΠ̂t = ∇u(t,Xt,Ht)σ(t,Xt)dWt +
∑

Z∈Zt

δuZ(t,Xt,Ht−)dMZ
t , (39)

1As a Doob martingale, namely, the conditional expectation process of a fixed random variable.
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Min-variance hedging strategies
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Min-variance hedging strategies
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Min-variance hedging strategies
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Conclusion

Thank you for your attention!
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