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Hedging CDO tranches using single-name CDS-s

Main issue: hedging of portfolio credit derivatives

@ Cash-flows driven by the realized path of the aggregate loss process

L,

where R; is the recovery rate and H; is the default indicator of obligor i
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Markovian model of portfolio credit risk

Simultaneous default model

@ Defaults are the consequence of triggering-events affecting simultaneously
pre-specified groups of obligors

Example: n =5 and Y = {{1},{2}, {3}, {4}, {5}, {4,5}, {2, 3,4}, {1,2}}.
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Markovian model of portfolio credit risk

{1,...,n} set of credit references

Y={{1},...,{n}, Lh,..., I} pre-specified groups of obligors

@ Ay = Ay (¢) deterministic intensity function of the triggering-event
associated with group Y € Y

e H, = (H{,...,H}) defined as an n-dimensional Markov chain in {0,1}"
such that for k,m € {0,1}™:

P(Hypar=m|Hi =k) = Y Ay ()1 per pmydt
Yey

where kY is obtained from k = (k1,. .., kn) by replacing the components
kj, j € Y, by number one. ex: (0,1,0,0)%4 =(1,1,0,1)

o 7, = o(H, ,u <t) natural filtration of H
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Markovian model of portfolio credit risk

Example: n =2

Y ={{1},{2},{1,2}}. H; = (H{, H?) is a multivariate continuous-time
Markov chain with space set {(0,0), (1,0), (0,1),(1,1)} and generator matrix

(0,0) (1,00 (0,1) (1,1)
0,00 = Ay Az Af1,2)
[ 0 = 0 Aoy +Aagy
onf o o - Ay t+tApy
e\ o 0 0 0

@ Obligor 1 defaults with intensity A{1} 4+ A(1 2} regardless of the state of
the pool

@ Obligor 2 defaults with intensity A{2} 4+ A(1 2} regardless of the state of
the pool
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Markovian model of portfolio credit risk

n-dimensional case
Obligor i defaults with intensity i(t) = > Ay ()1ievy

Yey

P(H{yq — Hi = 1| F) =P(H{ g — Hi = 1| Hy) = (1 — H)\i(t)dt

@ Each default indicator process H', i = 1,...,n is Markov with respect to
F: strong Markov copula property (Bielecki, Vidozzi and Vidozzi 2008)

@ On economic grounds, this means that there is no contagion effect : past
defaults do not have any effect on intensities of surviving names
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Markovian model of portfolio credit risk

The latter construction can be extended to the case of stochastic intensity
functions:
Ay = Ay(t,xt), Ye)y

where X; = (X},..., X[) is a multivariate diffusion process:

dX; =bi(t, X)) dt + ou(t, X)) dW¢ , i=1,...,n

e W= (W_},...,W{): n-dimensional Brownian motion with correlation
matrix o(t) = (pi,;(t))1<ij<n
@ b;, 0, are suitable drift and variance function-coefficients
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Markovian model of portfolio credit risk

Markov property of the model

Let F = FXH be the natural filtration of (X, H). The process (X, H) is an
F-Markov process with generator A given by

Au(t, x, k) = Z (bi(t, 2;) 0z, u(t, x, k) + 1af(t, wi)('?ilgu(t, X, k))

: 2

1<i<n

+ Y (ot mi)oy(t, 15)0%, o, ult, x, k)
1<i<j<n

+ 3 Av(tx) (u(m x,k¥) — u(t, x, k))
Yey

Areski Cousin Dynamic Modeling of Portfolio Credit Risk with Common Shocks



Markovian model of portfolio credit risk

The intensity of a jump of H® from H;_ =0 to 1 is given by:

Xt Xe) = Ay (6, Xe) + Y Ar (8, Xe) Liery
k=1

Markov copula property

Under the following conditions
@ A (t,x) only depends on x = (z1,...,x,) through x;, i=1,...,n
@ \j, (t,x) does not depend on x, k=1,...,m

then, for every i = 1,...,n, the process (X*, H") is an F-Markov process
admitting the following generator

Aiui(t,xi,ki) = bi(t, x,-)@xiui(t, .Tl,kl) + %a?(t,xi)aigui(t,xi,ki)
+ )‘i(t7 xi)(ui(t7 L, 1) - ui(ta Ti, kl))

Practical interest: two-steps calibration procedure of single-name and
multi-name products
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Common-Shock Model Interpretation

Main result: equivalent F;,—related common-shocks model

0V, ={Y €Y;Y ¢ supp(H¢)} : set of pre-specified groups that contain
at least one alive obligor

@ For any pre-specified group Y € ), we define

0
Ty (t) = inf{@ >t / Ay (s, Xs)ds > Ey}
t

where Ey, Y € ), are independent and exponentially distributed random
variables with parameter 1.

@ In the Fi—related common-shock model, the individual default time of a
non-defaulted name ¢ is defined by:

7i(t) = min Ty (t
( ) {YeYs;ieY} Y( )

° Hg(t) = 1(,t)<ey: default indicator of name i at time 0 in the
Fi—related common-shock model
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Common-Shock Model Interpretation

Main result

Proposition

Let Z be a subset of {1,...,n}. For every 61,...,0, > ¢, one has on the event
{Z = supp®(Hy)}:

P (75 > 0;, i € supp®(Hy) | Fz) =P (R(t) > 6,1 € Z | X¢)

Moreover, if

@ Ny =" | Hj denotes the cumulative number of defaults at time 6 in
the Markov model

® No(t,Z) =n—|Z|+ Y., Hj(t) denotes the cumulative number of
defaults at time 6 in the F;-related common-shock model

then, for every 6 > t, one has on the event {Z = supp®(H:)}:

P(No =k | F) =P (No(t, Z) = k | X;)

forany k=n—1Z|,...,n
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Common-Shock Model Interpretation

@ But, for any time @ > t, H}(t), i € Z, are conditionally independent
Bernoulli's given (Hg1 t),..., Hym (t))

@ Fast convolution-recursion procedure can be used to compute marginal
loss distributions conditionally on any given set {Z = supp®(H,)}

@ As far as standard CDO tranches are concerned, we will see that pricing,
calibration and computation of hedging strategies are numerically tractable
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Hedging CDO tranches using single-name CDS-s

Set of fundamental martingales for jump components of the Markov model

@ HZ is the indicator process of simultaneous default of names in the set Z,
for every subset Z of {1,...,n}

@ Y; =Y Nsupp®(H;—) stands for the set of survivors of set Y right before
t, for every pre-specified group Y € Y

Set of fundamental martingales

The process MZ defined by

dM7 = dH? — 07(t, X+, H;_)dt

is a martingale with respect to F, where the intensity function £z (¢,x,k) is
such that
(X e )= Y A (5X)
YeV;Yi=2Z
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Hedging CDO tranches using single-name CDS-s

Itd6 formula

Given a “regular enough” function u = u(¢,x,k), one has, for ¢ € [0, 7],

du(t, X, Hy) = (at +.At)u(t,Xt,Ht)dt + Vau(t, X, Hy)o(t, X)W,
+ Y ouf(t, Xy, Hy o)AMY

Zez,
where
@ o(t,x): diagonal matrix with diagonal (o (t, %:))1<i<n
Vu(t,x, k) = Oz, u(t,x, k), ..., 0z, u(t,x,k))
ou? (t,x,k) = u(t, x,k?) — u(t, x, k)

Z, ={Y;; Y € Y} \ 0: set of all non-empty sets of survivors of sets Y in
Y right before time ¢

Martingale dimension: n 4 2"
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Hedging CDO tranches using single-name CDS-s

Price dynamics for single-name CDS-s (buy-protection position)

@ T': contract maturity
@ S;: T-year contractual CDS-spread of obligor ¢

@ t; <--- <tp,=T: premium payment dates, h =t; —t;_1 length between
two premium payment dates (typically a quarter)

@ R;: recovery rate of obligor ¢

Except for numerical results, we will assume zero interest rates
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Hedging CDO tranches using single-name CDS-s

Price dynamics for single-name CDS i

The price P? and the cumulative value Piattimet e [0, T of a single-name
CDS on obligor ¢ are given by

P! = 14,5 qui(t, X7)
dﬁti = 1{T1>t}8$i/l]i (t7 XZ)O—Z(t7 th)th’L
+ 3 Luez (1— Bi—vilt, XJ) ) dm?

ZeZy

for a pre-default pricing function v; (¢, z;) such that

Lir>eyvilt, Xi) = E[(1 — Ri)Ljecr,<my — Sih Y 1irse3l 7

t<t; <T

Areski Cousin Dynamic Modeling of Portfolio Credit Risk with Common Shocks



Hedging CDO tranches using single-name CDS-s

Price dynamics for CDO tranche [a,b] (buy-protection position)

@ T: contract maturity
@ a: attachement point, b: detachement point, 0 <a <b <1
@ S%P: T-year contractual spread of CDO tranche [a, ]

@ t; <--- <tp,="T: premium payment dates, h =t; —t;_1 length between
two premium payment dates (typically a quarter)

@ CDO tranche cash-flows are driven by the tranche loss process
LY = Loy(Hy) = (Ly —a)t — (L = 0) T

where
n

1 i
Ly = Li(Hy) = — > (1 - Ri)H;
=1

is the credit loss process for the underlying portfolio
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Hedging CDO tranches using single-name CDS-s

Price dynamics for CDO tranche [a, b]
The price IT and the cumulative value Il at time ¢ € [0,T] of a CDO-tranche
[a, b] are given by

Ht = u(t, Xt, Ht)

dil; = Vu(t, X, Hy)o (t, X )dW,

+ 3 ( s (HZ fLa,b(Ht_)Jr(suZ(t,xt,Ht_)) AM?
ZeZy

for a pricing function u(t, x, k) such that

u(t, X, H) =E[L" — L - 5*"h Y (b—a-L7")|7]

t<t;<T

The pricing function u(¢, x, k) solves a very large system of Kolmogorov
pde. Thanks to the common-shock interpretation, it can be computed by
fast recursion procedures.
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Hedging CDO tranches using single-name CDS-s

Hedging portfolio: first d single-name CDS-s and the savings account

The vector of cumulative values P = (ﬁl7 cey ]Sd)T associated with the first d
CDS-s has the following dynamics:

dP, = Vv(t, Xy, H)o(t, X)dW, + Y Av7(t, X, H, )dM{

ZeZy

where

@ Vv is a d x n-matrix such that Vv(t,x, k)] = 1k, =0} 0u;vi(t, i), for
every 1 <i<dand1 <5< n

@ AvZ(t,x,k) is a d-dimensional column vector equal to

(Lgrez =0y (1 = R1) = vi(t,21)) 5+, Ligez, hy=op (1 = Ra) — va(t, za)))"
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Hedging CDO tranches using single-name CDS-s

Tracking error: Process (e:) such that eg = 0 and for ¢ € [0, 77:
de, = dfl, — (P,
- (Vu(t,Xt,Ht) - Cth(t,Xt,Ht))a(t,Xt)th

+ 3 (Auz(t,Xt,Ht_) fCtAvZ(t,Xt,Ht_))thZ
ZeZt

where

@ (= (¢, ..., ¢ gives the positions held at time t in CDS 1,...,d
° vu(t7 X, k) = (8zlu(t7 X, k)7 R 8I7zu(t7 X, k))

o Au?(t,x,k) = 6%u(t,x,k) + Lap(k?) — La (k)
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Hedging CDO tranches using single-name CDS-s

Min-variance hedging strategies

The min-variance hedging strategy ¢ for the CDO-tranche [a, b] is

o . 1
d(II, P d{P
e < <dt>t> BR

where ¢ = (u,v)(v,v)™!, with

(u,v) = (Vu)o(VV)" + > AvAu’ (AvY)T
Yey
(v,v) = (Vv)o*(Vv)T + > AvAvY (AvY)T

Yey
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Calibration on CDX index

Data set: 5-year CDX North-America |G index on 20 December 2007

@ Quoted spreads at different pillars of the n = 125 index constituents

@ Quoted spreads of standard tranches [0,3], [3,7], [7,10], [10,15], [15,30]
Model specification:

@ Names are labelled with respect to decreasing level of spreads
I3

CDS Spreads

@ m=>5groups Iy C --- C I5 such that I; = {1,...,6}, I, ={1,...,19},
Is={1,...,25}, I, = {1,...,61}, I = {1,...,125}

@ Piecewise-constant intensities A(1},..., A{125}, Ary, ..., A1y with grid
points corresponding to CDS pillars

@ Homogeneous and constant recovery rates: 40%

@ Constant short-term interest rate: 3%
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Calibration on CDX index

Calibration results:

| Tranche [ 03 | B7 [ [710] [ [10,15] [ [15,30] |
Model spread in bps 48.0701 | 254.0000 | 124.0000 | 61.0000 | 38.9390
Market spread in bps || 48.0700 | 254.0000 | 124.0000 | 61.0000 | 41.0000
Abs. Err. in bps 0.0001 0.0000 0.0000 0.0000 2.0610
% Rel. Err. 0.0001 0.0000 0.0000 0.0000 5.0269

@ Names in the set I5 \ 14 are excluded from the calibration constraints
(they can only default within the Armageddon shock I5)
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Calibration on CDX index

Implied 5-year loss distribution:

Loss distribution at t=5 with constant recovery of 40%
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Min-variance hedging strategies

Hedging with the 3 riskiest names
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Min-variance hedging strategies

Hedging with the 4 riskiest names
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Min-variance hedging strategies

Hedging with the 5 riskiest names
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Min-variance hedging strategies

Hedging with the 6 riskiest names (group 1)
T T T
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Min-variance hedging strategies

Hedging [0-3%)] equity tranche with the 61 riskiest CDS-s (all name in I4)

Hedging [0-3%] equity tranche with the 61 riskiest names (all names in 14)

T T T T T
—©—Names in group I1
01k —=—Names in group 12\I1 |
—»—Names in group I3\12
o ——Names in group 14\I3
3 0.05F i
8
x
L
g o -
£
o
c
R -0.051 R
O
-0.1- -
-0.15~ -
—0. L L L L L
1%00 1000 800 600 400 200 0

3-year CDS spread

reski Cousin Dynamic Modeling of Portfolio Credit Risk with Common Shocks



Min-variance hedging strategies

Hedging [3-7%] tranche with the 61 riskiest CDS-s (all name in 14)

Hedging [3-7%)] mezzanine tranche with the 61 riskiest names (all names in group 4)
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Min-variance hedging strategies

Hedging [7-10%)] tranche with the 61 riskiest CDS-s (all name in I4)

Hedging [7-10%] tranche with the 61 riskiest names (all names in group 4)
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Min-variance hedging strategies

Hedging [10-15%)] tranche with the 61 riskiest CDS-s (all name in I4)

Hedging [10-15%] tranche with the 61 riskiest names (all names in group 4)
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Min-variance hedging strategies

Hedging [15-30%)] tranche with the 61 riskiest CDS-s (all name in I4)

Hedging [15-30%] tranche with the 61 riskiest names (all names in group 4)
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Conclusion

In this paper, we construct a dynamic bottom-up model of portfolio credit risk:

@ Markov-copula construction of default times: two-steps calibration
procedure of model parameters

@ Common-shocks representation of default times conditionally on any given
state of the Markov model: fast numerical computation of conditional loss

distributions

@ The model allows us to hedge CDO tranches using single-name CDS-s in
a theoretically sound and practical convenient way
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Conclusion

Thank you for your attention!
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Markovian model of portfolio credit risk

Comment on Markov copula property

@ The Markov copula property satisfied by the model is known as the strong
Markov copula property. This property prohibits default contagion
between individual credit names.

@ A weaker form of the Markov copula property, where for every
i=1,...,n, the process (X, H") is an F'-Markov but not-necessarily
F-Markov, has also been studied. Such weak Markov copula property
allows for default contagion between individual credit names.
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